f; RMO0O017
’ life.augmented

Reference manual

SPC560B40x, SPC560B50x, SPC560C40x, SPC560C50x 32-bit

MCU family built on the embedded Power Architecture®

July 2015

Introduction

The SPC560Bx and SPC560Cx is a new family of next generation microcontrollers built on
the Power Architecture® embedded category. This document describes the features of the
family and options available within the family members, and highlights important electrical
and physical characteristics of the device.

The SPC560Bx and SPC560Cx family of 32-bit microcontrollers is the latest achievement in
integrated automotive body application controllers. It belongs to an expanding family of
automotive-focused products designed to address the next wave of body electronics
applications within the vehicle. The advanced and cost-efficient host processor core of the
SPC560Bx and SPC560Cx automotive controller family complies with the Power
Architecture embedded category, which is 100 percent user-mode compatible with the
original Power Architecture technology. It operates at speeds of up to 64 MHz and offers
high performance processing optimized for low power consumption. It capitalizes on the
available development infrastructure of current Power Architecture devices and is supported
with software drivers, operating systems and configuration code to assist with users
implementations.

DoclD14629 Rev 9 1/888

www.st.com

http://www.st.com

Contents RMO0017

Contents
1 Preface 37
11 OBV W . ot 37
1.2 AUdIBNCE . . 37
13 Guide to thisreference manual 37
14 Register description conventions 40
15 References 41
1.6 How to use the SPC560Bx and SPC560Cx documents 41
16.1 The SPC560Bx and SPC560Cx documentset 41
1.6.2 Reference manualcontent i 42
1.7 Using the SPC560Bx and SPC560CXuviiiiiinnnnn... 43
1.7.1 Hardware design i e 43
1.7.2 INpUt/OUtPUL PINS 44
1.7.3 Software design 44
1.7.4 Otherfeatures e 45
2 INtroducCtiono 46
2.1 The SPC560Bx and SPC560Cx microcontroller family 46
2.2 Features 46
2.2.1 SPC560Bx and SPC560Cx family comparison 46
222 Block diagram 49
223 Chip-level features 50
2.3 Packages 51
2.4 Developer SUPPOrt e 51
3 Memory Map 52
4 Signal description 55
4.1 INtrodUcCtion 55
4.2 Package pinouts 55
4.3 Pad configuration during resetphases 58
4.4 Voltage supply pins e 59
4.5 Pad types ... i e 60
4.6 SYS M PINS . .o e 60

2/888 DoclD14629 Rev 9 ‘Yl

RMO0017 Contents
4.7 Functional ports i e 60

4.8 NEXUS 2+ PINSo 78

5 Microcontroller Boot 79
51 Bootmechanism 79

51.1 Flash memory boot 80

5.1.2 Serialbootmode 82

5.1.3 CensorShip . . oo 83

5.2 Boot Assist Module (BAM) 87

5.2.1 BAM software flow 87

5.2.2 LINFlexD (RS232) booto 95

5.2.3 FIEXCAN bOOt 96

5.3 System Status and Configuration Module (SSCM) 98

53.1 Introduction 98

53.2 Features 98

5.3.3 Modes of operation 99

5.3.4 Memory map and register description 99

6 Clock DesCription e 105
6.1 Clock architecture 105

6.2 Clock gating 106

6.3 Fast external crystal oscillator (FXOSC) digital interface 107

6.3.1 Main features 107

6.3.2 Functional description 107

6.3.3 Register description 108

6.4 Slow external crystal oscillator (SXOSC) digital interface 109

6.4.1 INtroducCtion 109

6.4.2 Main features 109

6.4.3 Functional description i 109

6.4.4 Register description 110

6.5 Slow internal RC oscillator (SIRC) digital interface 111

6.5.1 Introduction e 111

6.5.2 Functional description 111

6.5.3 Register description 112

6.6 Fast internal RC oscillator (FIRC) digital interface 113

6.6.1 Introduction 113

m DoclD14629 Rev 9 3/888

Contents RMO0017
6.6.2 Functional description 113

6.6.3 Register description 114

6.7 Frequency-modulated phase-locked loop (FMPLL) 114

6.7.1 INtroduCtion e 114

6.7.2 OVEIVIBW . .ttt e 114

6.7.3 Features 115

6.7.4 Memory map 115

6.7.5 Register description 116

6.7.6 Functional description 119

6.7.7 Recommendations 122

6.8 Clock monitorunit (CMU) i 122

6.8.1 INtroduction 122

6.8.2 Main features 122

6.8.3 Block diagram 123

6.8.4 Functional description 124

6.8.5 Memory map and register description 125

7 Clock Generation Module (MC CGM) 130
7.1 OV IV W . 130

7.2 Features 132

7.3 Modes of Operation i 132

7.3.1 Normal and Reset Modes of Operation 132

7.4 External Signal Description e 132

7.5 Memory Map and Register Definition 132

7.5.1 Register Descriptions 136

7.6 Functional Description i 140

7.6.1 System Clock Generation, 140

7.6.2 Output Clock Multiplexing i 140

7.6.3 Output Clock Division Selection 142

8 Mode Entry Module (MC_ME) e 143
8.1 INtroducCtion e 143

8.1.1 OVEIVIBW . oo 143

8.1.2 Features 145

8.1.3 Modes of Operation i 145

8.2 External Signal Description i 146

4/888 DoclD14629 Rev 9 m

RMO0017 Contents
8.3 Memory Map and Register Definition 146

8.3.1 Register Description 154

8.4 Functional Descriptionc. 175

8.4.1 Mode Transition Request i 175

8.4.2 Modes Details 176

8.4.3 Mode Transition Process, 180

8.4.4 Protection of Mode Configuration Registers 190

8.4.5 Mode Transition Interrupts 190

8.4.6 Peripheral Clock Gating 192

8.4.7 Application Example 192

9 Reset Generation Module (MC_RGM) 194
9.1 INtroduUCtioNo 194

9.1.1 OV W L o 194

9.1.2 Features 196

9.1.3 Modes of operation 196

9.2 External signal description i 197

9.3 Memory map and register definition L. 197

9.3.1 Register descriptions 199

9.4 Functional description 210

94.1 Resetstate machine i 210

9.4.2 Destructive resetso 214

9.4.3 External reset 214

9.4.4 Functional resets 215

9.4.5 STANDBY entry SEqQUENCEttt 215

9.4.6 Alternate event generation e 215

9.4.7 Boot mode capturing 216

10 Power Control Unit (MC_PCU) 217
10.1 INtroduCtion 217

1011 OVEIVIEW ittt e e e e 217

10.1.2 FealUreS . . oottt 218

10.1.3 Modesof Operation i 218

10.2 External Signal Description 219

10.3 Memory Map and Register Definition 219

10.3.1 Register DesCriptionso 220

"_l DoclD14629 Rev 9 5/888

Contents RMO0017
10.4 Functional Description i e 224

10.4.1 General 224

10.4.2 Reset/Power-OnReset i 224

10.4.3 MC_PCU Configuration 224

10.4.4 Mode Transitionst 224

10.5 Initialization Information 226

10.6 Application Information 226

10.6.1 STANDBY Mode Considerations 226

11 Voltage Regulators and Power Supplies 228
11.1 Voltageregulators i e 228

11.1.1 High power regulator (HPREG) 228

11.1.2 Low power regulator (LPREG) 228

11.1.3 Ultra low power regulator (ULPREG) 228

11.1.4 LVDsand POR e 229

11.1.5 VREGdigitalinterface 229

11.1.6 Register description 229

11.2 Power supply Strategy 230

11.3 Power domain organizationirira.. 231

12 Wakeup Unit (WKPU) 233
121 OVEIVIBW .ottt e e 233

12,2 FeatUIeS . . . 235

12.3 External signal description 235

12.4 Memory map and register description 235

1241 MEMOIY MAP . . .ttt et ettt e e 235

12.4.2 NMI Status Flag Register (NSR) i 236

12.4.3 NMI Configuration Register (NCR) 237

12.4.4 Wakeup/Interrupt Status Flag Register (WISR) 238

12.4.5 Interrupt Request Enable Register IRER) 238

12.4.6 Wakeup Request Enable Register (WRER) 239

12.4.7 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER) ... 239

12.4.8 Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER) ... 240

12.4.9 Wakeup/Interrupt Filter Enable Register (WIFER) 240

12.4.10 Wakeup/Interrupt Pullup Enable Register (WIPUER) 241

12.5 Functional description e 241

6/888 DoclD14629 Rev 9 m

RMO0017 Contents
1251 General 241

12.5.2 Non-maskableinterrupts i 242

12.5.3 External wakeups/interrupts i 243

12.5.4 On-Chipwakeupsottt e e e e e 244

13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API) 246
131 OVEIVIEW et e 246

13.2 FeatUIeS . .. 246

13.3 Device-specific information 248

13.4 Modesof operation 248

13.4.1 Functionalmode 248

13.4.2 Debugmode 249

13.5 Register descriptions 249

13.5.1 RTC Supervisor Control Register (RTCSUPV) 249

13.5.2 RTC Control Register (RTCC) e 250

13.5.3 RTC Status Register (RTCS) i 252

13.5.4 RTC Counter Register (RTCCNT) ..., 252

13.6 RTC functional description i, 253

13.7 APl functional description 253

14 CAN Sampler ... 255
14.1 IntroduCtion 255

142 Mainfeatures 255

14.3 Register description 256

14.3.1 Control Register (CR) e 256

14.3.2 Sampleregistern (N =0..11) i 257

14.4 Functional description 258

14.4.1 Enabling/Disabling the CANsampler 258

14.4.2 Baudrate generation 259

15 €200z0h Core description e 260
151 OVEIVIEW . ottt e e 260

15.2 Microarchitecture SUMMaryuiine i 260

15.3 Blockdiagram e 262

154 FeatUres 263

15.4.1 Instruction unitfeatures 263

m DoclD14629 Rev 9 7/888

Contents RMO0017
15.4.2 Integerunitfeatures 264

15.4.3 Load/Store unitfeaturest 264

15.4.4 e200z0h systembusfeaturesc ... 264

15.45 Nexus2+featurest 264

15.5 Core registers and programmer's model 265

16 Interrupt Controller (INTC) e 267
16.1 INtroduCtion 267

16.2 Features 267

16.3 Block diagram 268

16.4 Modes ofoperationt 269

16.4.1 Normalmode 269

16.5 Memory map and register description 270

16.5.1 Module memory Map oot 270

16.5.2 Register descriptiont 271

16.6 Functional description 278

16.6.1 INterrupt reqUESE SOUICES vttt ettt e e e 286

16.6.2 Priority management 286

16.6.3 Handshaking with processor 288

16.7 Initialization/application information 290

16.7.1 Initialization flow 290

16.7.2 Interrupt exceptionhandler 290

16.7.3 ISR, RTOS, and task hierarchy 293

16.7.4 Orderof execution it 293

16.7.5 Priority ceiling protocol 294

16.7.6 Selecting priorities according to request rates and deadlines 295

16.7.7 Software configurable interruptrequests 295

16.7.8 Lowering priority withinan ISR 296

16.7.9 Negating an interrupt request outside of its ISR 297

16.7.10 Examining LIFO contents, 297

17 Crossbar Switch (XBAR) 298
17.1 IntroduCtion 298

17.2 Blockdiagram e 298

17.3 OVEIVIEW . . 299

17.4 FeatUresS e 299

8/888 DoclD14629 Rev 9 m

RM0017 Contents
175 Modesofoperation. i 299

1751 Normalmode 299

1752 Debugmode 299

17.6 Functional description 299

17.6.1 OVEIVIEW . oot e 299

17.6.2 Generaloperation 300

17.6.3 Master POMS 300

17.6.4 SIaVE POITS . . .ot 301

17.6.5 Priority assignment 301

17.6.6 Arbitration 301

18 Memory Protection Unit (MPU) 303
18.1 INtroducCtion 303

18.2 FeatUIBS . ..ot 304

18.3 Modesofoperationc.c.. i 305

18.4 External signal description 305

18.5 Memory map and register description 305

18.5.1 MEMOIY MAP . oottt e e e e e e e e 306

18.5.2 Register description 306

18.6 Functional description 317

18.6.1 Accessevaluation Macro, 317

18.6.2 Putting it all together and AHB error terminations 319

18.7 Initialization information 319

18.8 Application information e 320

19 System Integration Unit Lite (SIUL) 321
19.1 INtroduCtion 321

19,2 OVeIVIBW ..ot 321

19.3 FeatUres 323

19.4 External signal description i 323

19.4.1 Detailed signal descriptions 324

19.5 Memory map and register description 324

19.5.1 SIULMEMOIY MAP . . v vt e e e e e e e e e e e e e e 324

19.5.2 Register protection 326

19.5.3 Register descriptions 326

‘Y_l DoclD14629 Rev 9 9/888

Contents RMO0017
19.6 Functional description i e 342

19.6.1 Pad control 342

19.6.2 General purpose input and output pads (GPIO) 342

19.6.3 Externalinterrupts e 343

19.7 PiINMUXING ..o e 344

20 Inter-Integrated Circuit Bus Controller Module (I°C) 345
20.1 INrodUCLIONt 345

20.1.1 OVEIVIBW .ottt 345

20.1.2 FeaAUIES . . . it 345

20.1.3 Blockdiagram 345

20.2 External signal description 346

20.2.1 SCL it 346

20.2.2 SDA . 346

20.3 Memory map and register description 346

20.3.1 Module memory Mmapouui it e 346

20.3.2 12C Bus Address Register (IBAD)ouuuuinnnennnn. 347

20.3.3 I°CBus Frequency Divider Register (IBFD) 347

20.3.4 12C Bus Control Register (IBCR) 354

20.3.5 I°C Bus Status Register (IBSR) 355

20.3.6 1°C Bus Data I/O Register IBDR) 356

20.3.7 1°CBus Interrupt Config Register (IBIC) 357

20.4 Functional description 357

20.4.1 I-BUSProtoCol oo e 357

20.4.2 INeITUPES ..t 361

20.5 Initialization/application information 361

2051 I’C programming examples e 361

21 LIN Controller (LINFIex) 367
211 INrodUCLiON 367

21.2 Mainfeatures 367

21.2.1 LINmodefeatures 367

21.22 UARTmodefeatures i 367

21.2.3 Featurescommonto LINand UART 368

21.3 Generaldescription 368

21.4 Fractional baud rate generation 369

10/888 DoclD14629 Rev 9 m

RMO0017 Contents
21.5 Operating mModes it e e 371
21.5.1 Initialization mode 371

2152 Normalmode e 371

21.5.3 Lowpowermode (Sleep) 371

21.6 TesStmOdest 372
21.6.1 LoopBackmode 372

21.6.2 SelfTestmode 372

21.7 Memory map and registers description 373
2171 MEMOIY MAP o« v oo ettt e et e et ettt 373

21.8 Functional description 398
2181 UARTMOCE .. .o 398

21.82 LINMOE 400

21.8.3 8-bittimeoutcounter 409

21.8.4 INEITUPLS . ..t 410

22 FIeXCAN L 412
22.1 INrodUCHION 412
22,11 OVEIVIEW .ottt ettt e e e e e e e e e 412

22.1.2 FlexCAN module features 413

22.1.3 Modesof operation 414

22.2 External signal description 414
2221 OVEIVIBW . oottt e 414

22.2.2 Signal descriptions e 415

22.3 Memory map and register description 415
22.3.1 FlexCAN Memory mappingt 415

22.3.2 Message bufferstructure 417

22.3.3 RXFIFOStUCtUre e 420

22.3.4 Registerdescription 422

22.4 Functional description 440
2241 OVEIVIEW .ottt et e e e e e 440

22.4.2 Local priority transSmisSion 440

22.4.3 TranSMIt PrOCESS . . . v vttt et et e e e e 441

22.4.4 Arbitration proCess 441

2245 RECEIVE PrOCESS .\ ittt it e 442

22.4.6 MatChing ProCESS . . vttt et e e 443

2247 DatacCoherenCet 445

"_l DoclD14629 Rev 9 11/888

Contents RMO0017
22.4.8 RXFIFO ... 447

22.4.9 CAN protocol related features 448
22.4.10 Modes of operationdetails 452
22401 INeITUPES ..ttt 453
22.4.12 Businterface 453

22.5 Initialization/Application information 454
2251 FlexCAN initialization sequence i, 454

22.5.2 FlexCAN addressing and SRAM size configurations 455

23 Deserial Serial Peripheral Interface (DSPI) 456
23.1 Introduction 456
23.2 FRAIUIES . . . oo 457
23.3 Modesofoperation 458
23.3. 1 Mastermode 458

23.3.2 Slave mode 458

23.3.3 Module Disablemode 458

23.34 Debugmode 458

23.4 External signal description 459
23.4.1 Signal Overview 459

23.4.2 Signal names and descriptions 459

23.5 Memory map and register description 460
2351 MEMOIY MaP ..ottt ettt 460

23.5.2 DSPI Module Configuration Register (DSPIx MCR) 461

23.5.3 DSPI Transfer Count Register (DSPIX_TCR) 464

23.5.4 DSPI Clock and Transfer Attributes Registers 0-5 (DSPIx_CTARN) . . 465

23.5.5 DSPI Status Register (DSPIX_SR) i 473

23.5.6 DSPI Interrupt Request Enable Register (DSPIX_ RSER) 475

23.5.7 DSPI PUSH TX FIFO Register (DSPIX_ PUSHR) 477

23.5.8 DSPI POP RX FIFO Register (DSPIx_POPR) 479

23.5.9 DSPI Transmit FIFO Registers 0—-3 (DSPIX_TXFRn) 479

23.6 Functional description 481
23.6.1 Modesofoperation 482

23.6.2 Startand stopof DSPItransfers 483

23.6.3 Serial peripheral interface (SPI) configuration 484

23.6.4 DSPI baud rate and clock delay generation 486

23.6.5 Transferformats 489

12/888 DoclD14629 Rev 9 m

RM0017 Contents
23.6.6 Continuous serial communications clock 496

23.6.7 Interrupt reqUESTESo 498

23.6.8 Powersavingfeatures 499

23.7 Initialization and application information 500

23.7.1 Howtochange qUEUES i 500

23.7.2 Baudrate settings e 500

23.7.3 Delay settingst 501

23.7.4 Calculation of FIFO pointer addresses 502

24 TIM IS o o 505
24.1 Technical Overview 505

2411 Overviewofthe STM 507

24.1.2 OverviewoftheeMIOS 507

24.1.3 Overviewofthe PIT e 509

24.2 System Timer Module (STM) 509

24.2.1 IntroducCtion 509

24.2.2 External signal description 509

24.2.3 Memory map and register definition 510

24.2.4 Functional description 513

24.3 Enhanced Modular IO Subsystem (eMIOS) 513

24.3.1 IntroducCtion 513

24.3.2 External signal description 516

24.3.3 Memory map and register description 516

24.3.4 Functional description 528

24.3.5 Initialization/Application information o L 558

24.4 Periodic Interrupt Timer (PIT) e 562

2441 IntroducCtion 562

24.4.2 FEAIUIES . . .ttt 562

24.4.3 Signal description e 562

24.4.4 Memory map and register description, 563

24.45 Functional description 567

24.4.6 Initialization and application information 568

25 Analog-to-Digital Converter (ADC) 570
25.1 OVEIVIEW ... 570

25.1.1 Device-specificfeatures i 570

25.1.2 Device-specific implementation, 571

"_l DoclD14629 Rev 9 13/888

Contents RMO0017
25.2 INrodUCLiON 571

25.3 Functional description 572

25.3.1 Analog channel conversion 572

25.3.2 Analog clock generator and conversion timings 575

25.3.3 ADC sampling and conversiontiming 576

25.3.4 ADCCTU (Cross Triggering Unit)couii.. 578

25.3.5 Presampling e 579

25.3.6 Programmable analogwatchdog 580

25.3.7 INteITUPES . . oo e 582

25.3.8 Externaldecode signalsdelay 582

25.3.9 Power-downmode 582

25.3.10 Auto-clock-off mode 583

25.4 Registerdescriptions 583

2541 IntroduCtion e 583

25.4.2 Control logic registerst e 587

25.4.3 Interrupt registerso 590

25.4.4 Thresholdregisters 595

25.45 Presampling registers 597

25.4.6 Conversion Timing Registers CTR[0..2] 599

25.4.7 Maskregisters 599

25.4.8 Delay registers e 602

25.4.9 Dataregisters 603

26 Cross Triggering Unit (CTU) 605
26.1 INtroduCtion 605

26.2 Mainfeatures 605

26.3 Blockdiagram 605

26.4 Memory map and register descriptions 606

26.4.1 Event Configuration Registers (CTU_EVTCFGRX) (x=0...63) 606

26.5 Functional description 607

26.5.1 Channelvalue 609

27 Flash Memory e 611
27.1 INtroducCtion 611

27.2 Mainfeaturest e 612

27.3 Blockdiagram 612

14/888 DoclD14629 Rev 9 m

RM0017 Contents
27.4 Functional description 613
27.4.1 Module Structure 613

27.4.2 Flash memory module sectorization 614

2743 TestFlashblock 615

27.4.4 Shadow SECIOrttt 616

27.45 Usermode operationt 617

27.4.6 RSBl ..o 618

2747 Power-down mode 618

27.4.8 LOW POWEI MOOEottt e e e 619

27.5 Registerdescription 619
27.5.1 CFlashregister description 621

27.5.2 DFlash register description i 648

27.6 Programming considerations 671
27.6.1 Modify operation 671

27.6.2 Double word program 672

27.6.3 SECIOM BraSE . . .ottt 674

27.7 Platform flash memory controller 682
27.7.1 Introduction 682

27.7.2 Memory map and register description 684

27.8 Functional description 693
27.8.1 ACCESS ProteCtionS oottt 694

27.8.2 Readcycles—Buffermiss 694

27.8.3 Readcycles—Bufferhit 694

27.8.4 Write CYCleS ... oo 694

27.85 Errortermination 694

27.8.6 Accesspipelining 695

27.8.7 Flash error response operationc..iiiiin.. 695

27.8.8 BankO page read buffers and prefetch operation 695

27.8.9 Bankl Temporary Holding Register 697
27.8.10 Read-while-write functionality 698

27.8.11 Wait-state emulation 699

28 Static RAM (SRAM) 701
28.1 IntroducCtion 701
28.2 Low power configuration 701
28.3 Registermemory map 701
"_l DoclD14629 Rev 9 15/888

Contents RMO0017
28.4 SRAMECC MEChaniSmMttt e e 702

28.4.1 ACCESSEIMINGo e 702

28.4.2 Reseteffectson SRAMaccessesciiii. 703

28.5 Functional description 703

28.6 Initialization and application information 703

29 Register Protection e 705
29.1 Introduction 705

29.2 FRAIUIES . .. oo 705

29.3 Modesofoperation 706

29.4 External signal description 706

29.5 Memory map and register description 706

29.5.1 MEMOMY MAP . .ottt et e 707

29.5.2 Register description 708

29.6 Functional description 710

29.6.1 General 710

29.6.2 Changelocksettings 710

29.6.3 ACCESS BITOIS . . i ittt ettt e 713

20,7 RESEBl . . 714

29.8 Protected registers 714

30 Software Watchdog Timer (SWT) ... 719
301 OVEIVIEW ..ottt 719

30.2 Features 719

30.3 Modesofoperation.............. 719

30.4 External signal description 719

30.5 Memory map and register description 720

30.5.1 MEeMOIY MapP . ..ttt 720

30.5.2 Registerdescription 721

30.6 Functional description e 725

31 Error Correction Status Module (ECSM) 728
31.1 Introduction 728

31.2 OVEIVIEW .ottt 728

31.3 Features 728

16/888 DoclD14629 Rev 9 ‘W

RMO0017 Contents
31.4 Memory map and register description 728

3141 MEMOIY MAP . . ittt e e e e e e e e e e e 728

31.4.2 Registerdescription 730

31.4.3 Register protection 748

32 IEEE 1149.1 Test Access Port Controller JTAGC) 749
321 INtroduCtion . ..ot 749

32.2 Blockdiagram 749

32.3 OVEIVIEW . .ot 749

324 Fealures 750

325 Modesofoperation.............. 750

3251 ReSEl ... 750

32.5.2 |EEE 1149.1-2001 defined testmodes 750

32.6 External signal description 751

32.7 Memory map and register description 751

32.7.1 Instruction Register 751

32.7.2 Bypass ReQiSter e 752

32.7.3 Device Identification Register, 752

32.7.4 Boundary Scan Register 753

32.8 Functional Description 753

32.8.1 JTAGC Reset Configuration 753

32.8.2 IEEE 1149.1-2001 (JTAG) Test AccessPort 753

32.8.3 TAP controller state machine 753

32.8.4 JTAGCINSIUCLIONS e e e e 755

32.8.5 Boundary SCaniiiii e 757

329 e200z0OnCEcontroller 757

32.9.1 e200z0 OnCE Controller Block Diagram 757

32.9.2 e200z0 OnCE Controller Functional Description 758

32.9.3 e200z0 OnCE Controller Register Description 758

32.10 Initialization/application information 760

33 Nexus Development Interface (NDI) 761
33.1 INtroduCtiono 761

33.2 Blockdiagram 761

33.3 Fealures 762

33.4 ModesofOperation 763

‘Y_l DoclD14629 Rev 9 17/888

Contents RMO0017
3341 Nexus Reset 763

33.4.2 OperatingMode e 764

33.5 External Signal Description 764

33.5.1 Nexus Signal ResetStates 764

33.6 Memory Map and Register Description 764

33.6.1 Nexus Debug Interface Reqisters 765

33.6.2 Register Description e 765

33.7 Functional description 775

33.71 NPC HNDSHKmodule i, 775

33.7.2 Enabling Nexus Clients for TAP ACCESS, 776

33.7.3 Configuring the NDI for Nexus Messaging 776

33.7.4 Programmable MCKO Frequencyc.uuuiuuennnn.. 777

33.7.5 NexusMessagingt 777

33.7.6 EVTO Sharing 777

33.7.7 DebugMode Control 777

33.7.8 OwnershipTrace e 778

Appendix A Register Map 780
ReVISION NiStOrY 858
18/888 DoclD14629 Rev 9 m

RMO0017

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.

S74

Guide to thisreference manual. 37
Reference manual integration and functionalcontent 42
Code Flashmemory scalingottt e e e 46
SRAM MEMOrY SCaliNg o oot 46
SPC560Bx and SPC560CX device COMPariSONo oot e s a7
SPC560Bx and SPC560CX MEMOIY MaAP .« v oot ettt e ettt ettt e s 52
Voltage supply pin descCriptionst e 59
System pin desCriPlioNS o 60
Functional port pin descriptions e 61
Nexus 2+ pin desCriptioNS.ottt e e 78
Boot mode selection 79
RCHW field desCriptions.ot e e e e 81
Examples of legal and illegal passwords i 83
Censorship configuration and truthtable 84
SSCM_STATUS[BMODE] valuesasused by BAM 89
Serial boot mode —baud rates 89
BAM censorship mode detection e 90
UART boot mode download protocol e 95
FlexCAN boot mode download protocolt 97
SSCM MEMOIY MNP .« . v oot vttt e e e e e e e e e 99
SSCM_STATUS allowed register aCCeSSES . . . oottt ettt e e 99
SSCM_STATUSfield descriptions e e e 100
SSCM_MEMCONFIG field descriptionso e 100
SSCM_MEMCONFIG allowed register aCCesSSeS. v v vttt 101
SSCM_ERROR field descriptions. e 101
SSCM_ERROR allowed register aCCeSSESot e 102
SSCM_DEBUGPORT field descriptions.ot 102
Debug Status port MOdesSttt e e 103
SSCM_DEBUGPORT allowed register aCCesses.o v ittt e 103
Password Comparison Register field descriptions 104
SSCM_PWCMPHI/L allowed register aCCesSsesuvviiiin .. 104
SPC560Bx and SPC560Cx — Peripheral clock sources 107
Truth table of crystal oscillator e 108
FXOSC_CTL field descriptions.ottt e e e 109
SXOSCtruthtable 110
SXOSC _CTL field descCriptions.t e e e 111
SIRC_CTL field descriptions.t e e e e e 112
FIRC_CTL field descriptions.ttt e e e e 114
FMPLL MEeMOMY MaP . . .o ettt et e et e ettt et e e e 116
CRAfield desCriptions.ttt e 116
Input divide ratios o e e 117
Output divide ratios.ot 117
Loop divide ratioso e e 118
MR field desCriptions e e 118
FMPLL lookup table e e e 119
Progressive clock switching on pll_selectrisingedge 120
CMU MEMOIY MAP .« .« . vt ettt e e e et e e e et e e e e e e 125
CMU_CSR field descriptions e e e e 126

DoclD14629 Rev 9 19/888

List of tables RMO0017

Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.

20/888

CMU_FDR field descriptions e 127
CMU_HFREFR field descriptionso e 127
CMU_LFREFR field descriptions e 128
CMU_ISR field descriptions 129
CMU_MDR field descriptionsot 129
MC_CGM Register DesCription e 132
MC_CGM MemMOry Map e e e e e e e 133
Output Clock Enable Register (CGM_OC_EN) Field Descriptions. 137
Output Clock Division Select Register (CGM_OCDS_SC) Field Descriptions 138
System Clock Select Status Register (CGM_SC_SS) Field Descriptions 139
System Clock Divider Configuration Registers (CGM_SC_DCO...2) Field Descriptions . 139
MC_ME Mode DeSCHPLIONSo e 145
MC_ME Register DesCriptiono e 146
MC_ME Memory Map. 149
Global Status Register (ME_GS) Field Descriptions, 155
Mode Control Register (ME_MCTL) Field Descriptions 157
Mode Enable Register (ME_ME) Field Descriptions. 158
Interrupt Status Register (ME_IS) Field Descriptions. 159
Interrupt Mask Register (ME_IM) Field Descriptions 160
Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions 161
Debug Mode Transition Status Register (ME_DMTS) Field Descriptions 162
Mode Configuration Registers (ME_<mode>_MC) Field Descriptions. 168
Peripheral Status Registers 0...4 (ME_PSO0...4) Field Descriptions. 171
Run Peripheral Configuration Registers (ME_RUN_PCO0...7) Field Descriptions. 172
Low-Power Peripheral Configuration Registers (ME_LP_PCO...7) Field Descriptions. . . 173
Peripheral Control Registers (ME_PCTLO...143) Field Descriptions 174
Peripheral control registers by peripheral 174
MC_ME Resource Control OVEIVIEW e 181
MC_ME System Clock Selection OVeIVIeW 186
MC_RGM register description e 197
MC_RGM MEMOIY MAP . . . et ettt e et e e e e e e e e e e 198
Functional Event Status Register (RGM_FES) field descriptions. 200
Destructive Event Status Register (RGM_DES) field descriptions. 201
Functional Event Reset Disable Register (RGM_FERD) field descriptions 203
Destructive Event Reset Disable Register (RGM_DERD) field descriptions 204
Functional Event Alternate Request Register (RGM_FEAR) field descriptions 205
Destructive Event Alternate Request Register (RGM_DEAR) field descriptions 206
Functional Event Short Sequence Register (RGM_FESS) field descriptions. 207
STANDBY Reset Sequence Register (RGM_STDBY) field descriptions 209
Functional Bidirectional Reset Enable Register (RGM_FBRE) field descriptions. 210
MC_RGM reset implications. e 211
MC_RGM alternate event selection i 215
MC_PCU Register DescCription e 219
MC_PCU MemMOry Map. . . . vt e e e e e e e e 219
Power Domain Configuration Register Field Descriptions 221
Power Domain Status Register (PCU_PSTAT) Field Descriptions. 223
VREG_CTL field descriptionst e 230
Wakeup VECtOr Mapping« oo oo e e 233
WKPU MEMOIY Map . . . o oot e e e 236
NSR field descriptions e 237
NCR field desCriptions e 237
WISR field descriptions. e 238

DoclD14629 Rev 9 ‘Yl

RMO0017 List of tables
Table 101. IRER field descCriptions e e 239
Table 102. WRER field descriptions e 239
Table 103. WIREER field descriptions e 240
Table 104. WIFEER field descCriptions e e 240
Table 105. WIFER field descriptions e 241
Table 106. WIPUER field descriptions e 241
Table 107. RTC/APIregisSter Map.t e e e e e 249
Table 108. RTCSUPV field descriptions. e e 249
Table 109. RTCC field descriptions e e e 250
Table 110. RTCS field descriptions e e 252
Table 111. RTCCNT field descriptionso e 253
Table 112. CAN sampler Mmemory Mapottt e e e e e e 256
Table 113. CR field desCriptions. 256
Table 114. |Interruptsourcesavailable 268
Table 115. INTC MEMOIY MAP . . . o oottt e e e e e e et e e e e e e 271
Table 116. INTC_MCR field descriptionso 272
Table 117. INTC_CPR field descriptions e 272
Table 118. PRIVAIUES 273
Table 119. INTC_IACKR field descriptions. e 274
Table 120. INTC_SSCIR[0:7] field descriptions e e 276
Table 121. INTC_PSRO_3-INTC_PSR208_210 field descriptions. oo, 277
Table 122. INTC Priority Select Register address offsets. 277
Table 123. Interruptvectortable. e 278
Table 124. Order of ISR execution example. e 293
Table 125. XBAR switch ports for SPC560Bx and SPC560CX, 298
Table 126. Hardwired bus master priorities e 301
Table 127. MPU MeMOIY MAPottt e e e e e e e e e e e e e e e e 306
Table 128. MPU_CESR field descriptions e 307
Table 129. MPU_EARN field descriptions. e 308
Table 130. MPU_EDRN field descriptions e 309
Table 131. MPU_RGDnN.WordO field descriptions e 310
Table 132. MPU_RGDn.Word1 field descriptions 310
Table 133. MPU_RGDn.Word2 field descriptions e 312
Table 134. MPU_RGDn.Word3 field descriptions i 314
Table 135. MPU_RGDAACH field descriptions. e 315
Table 136. Protection violation definition 318
Table 137. SIUL signal properties e e 323
Table 138. SIUL MEMOY MAPttt e e et e e e e e e e e e e e e e e 324
Table 139. MIDRL1 field descriptions. 327
Table 140. MIDR2 field descCriptions. e 328
Table 141. ISR field descriptions 329
Table 142. IRER field descriptions e 329
Table 143. IREER field descriptions e e 330
Table 144. IFEER field desCriptions e 330
Table 145. [IFER field desCriptions e e 331
Table 146. PCR bit implementation by padtype 332
Table 147. PCRx field descriptions. e 333
Table 148. PSMIO_3field descriptions 334
Table 149. Peripheral input pin selection 335
Table 150. GPDOOQ_3field descriptions e 337
Table 151. GPDIO_3field descriptionso 338
Table 152. PGPDOO0O — PGPDO3 register Mmap.ttt e e e e e 339
IS73 DoclD14629 Rev 9 21/888

List of tables RMO0017

Table 153.
Table 154.
Table 155.
Table 156.
Table 157.
Table 158.
Table 159.
Table 160.
Table 161.
Table 162.
Table 163.
Table 164.
Table 165.
Table 166.
Table 167.
Table 168.
Table 169.
Table 170.
Table 171.
Table 172.
Table 173.
Table 174.
Table 175.
Table 176.
Table 177.
Table 178.
Table 179.
Table 180.
Table 181.
Table 182.
Table 183.
Table 184.
Table 185.
Table 186.
Table 187.
Table 188.
Table 189.
Table 190.
Table 191.
Table 192.
Table 193.
Table 194.
Table 195.
Table 196.
Table 197.
Table 198.
Table 199.
Table 200.
Table 201.
Table 202.
Table 203.
Table 204.

22/888

PGPDIO — PGPDI3 register map ov it e e 339
MPGPDOO — MPGPDO7 register Map.o o vttt e e e e e 340
MPGPDOO0..MPGPDOY field descriptions 341
IFMC field descriptionso e 341
IFCPR field descriptions 342
[2C MEMOIY MAP . . o oo et e e e e e 347
IBAD field descriptions e 347
IBFD field desCriptions e 348
[-Bus multiplier factor 348
I-Bus prescaler divider values. 348
[-Bus tap and prescale values 348
12C divider and hold ValUES.ottt e 351
IBCR field descCriptions e 354
IBSR Field DeSCriptions e 355
IBIC field descCriptions e 357
INTErTUPL SUMMAY. . . o o o e e e e e e e e 361
Error calculation for programmed baudrates L 370
LINFIEX MEMOIY MAP . . o o oot e e e e e e e e e e e e e 373
LINCRL1 field descriptions e 375
Checksum bits configuration. e 376
LIN master break length selection 376
Operating mode Selection. e 377
LINIER field descriptions e 377
LINSR field descriptions 380
LINESR field descriptions e 382
UARTCR field descriptionso e 384
UARTSR field descriptionso e 385
LINTCSR field descriptions. e 387
LINOCR field descriptions i e e 388
LINTOCR field descriptions e e 389
LINFBRR field descriptions. 389
LINIBRR field descCriptions e 390
Integer baud rate selection 390
LINCFR field descriptions e 391
LINCR2 field descriptions e 391
BIDR field descriptions 392
BDRL field descriptions e 393
BDRM field descriptions 394
IFER field desCriptions e 395
IFMI field desCriptions.o e 395
IFMR field descriptionso 396
IFMR[IFM] configuration e 396
IFCR2n field descriptionst e 397
IFCR2n + 1 field descriptionso e 398
Message buffer. 399
Filter to interrupt vector correlation. e 407
LINFlex interrupt control 410
FIEXCAN SIgNalSo 415
FIEXCAN MEMOIY MAP . . o oot et e e e e e e e e e e e e 416
Message buffer MBO memory mappingo ot 417
Message Buffer Structure field description. 417
Message buffer code for Rx buffers 418

DoclD14629 Rev 9 ‘Yl

RMO0017 List of tables
Table 205. Message buffer code for Tx buffers 419
Table 206. Rx FIFO Structure field description. e 422
Table 207. MCR field desCriptions e e 423
Table 208. IDAM COING o vttt e e e 426
Table 209. CTRL field descriptions. e e 427
Table 210. RXGMASK field description e 431
Table 211. ESR field descriptions. 434
Table 212. Faultconfinement state 435
Table 213. IMASK2 field descriptions. 436
Table 214. IMASKI field descriptions. e 437
Table 215. [IFLAG2 field descCriptionso e 438
Table 216. IFLAG1 field descriptions oo e e 438
Table 217. RXIMRO — RXIMRG63 field description. e 440
Table 218. Time SEgMENt SYNLAXttt et e e e e e e e 450
Table 219. Bosch CAN 2.0B standard compliant bit time segment settings. 450
Table 220. Minimum ratio between peripheral clock frequency and CAN bitrate 451
Table 221. Signal properties.o e 459
Table 222. DSPIMEMOIY MaP . . . o oottt e et e e et e e e e e e 460
Table 223. DSPIx_MCR field descriptions e 462
Table 224. DSPIx_TCR field descriptions e 465
Table 225. DSPIx_CTARnN field descriptions e 466
Table 226. DSPI SCK duty CYCle e 469
Table 227. DSPI transfer frame Size. 469
Table 228. DSPIPCSto SCKdelay scaler e 470
Table 229. DSPI After SCK delay scaler e 470
Table 230. DSPI delay after transfer scaler 470
Table 231. DSPIbaud rate scaler. e 471
Table 232. DSPISCK duty CYCle e 471
Table 233. DSPI transfer frame Size. 471
Table 234. DSPIPCSto SCKdelay scaler e 472
Table 235. DSPI After SCK delay scaler e 472
Table 236. DSPI delay after transfer scaler 472
Table 237. DSPIbaud rate scaler. 473
Table 238. DSPIx_SR field descriptions. e 474
Table 239. DSPIx_RSER field descriptions e 476
Table 240. DSPIx_PUSHR field descriptions e 478
Table 241. DSPIx_POPR field descriptions e 479
Table 242. DSPIx_TXFRn field descriptions e 480
Table 243. DSPIx_RXFRn field description 481
Table 244. State transitions for start and stop of DSPItransfers 483
Table 245. Baud rate computation example. e 487
Table 246. CS to SCK delay computation example i 487
Table 247. After SCK delay computation example. 488
Table 248. Delay after transfer computation example i i 488
Table 249. Peripheral chip select strobe assert computation example. 489
Table 250. Peripheral chip select strobe negate computationexample 489
Table 251. Delayed master sample point. 493
Table 252. Interrupt request conditions 498
Table 253. Baud rate valUes. 501
Table 254. Delay valueso 502
Table 255. eMIOS_0 channel to pin mapping e 508
Table 256. eMIOS_1 channelto pin mappingt e e 508
IS73 DoclD14629 Rev 9 23/888

List of tables RMO0017

Table 257.
Table 258.
Table 259.
Table 260.
Table 261.
Table 262.
Table 263.
Table 264.
Table 265.
Table 266.
Table 267.
Table 268.
Table 269.
Table 270.
Table 271.
Table 272.
Table 273.
Table 274.
Table 275.
Table 276.
Table 277.
Table 278.
Table 279.
Table 280.
Table 281.
Table 282.
Table 283.
Table 284.
Table 285.
Table 286.
Table 287.
Table 288.
Table 289.
Table 290.
Table 291.
Table 292.
Table 293.
Table 294.
Table 295.
Table 296.
Table 297.
Table 298.
Table 299.
Table 300.
Table 301.
Table 302.
Table 303.
Table 304.
Table 305.
Table 306.
Table 307.
Table 308.

24/888

STM MEMOIY MAP . . oottt et ettt e e e e e e e e e e e e 510
STM_CR field descriptions 511
STM_CNT field descriptions e 511
STM_CCRNn field descriptions. e 512
STM_CIRn field descriptions 512
STM_CMPn field descriptions e 513
EMIOS MEeMOIY MAP. . . . oottt e e e e e e e 516
Unified Channel memory map e 517
EMIOSMCR field descriptions e 518
Global prescaler clock divider. e 518
EMIOSGFLAG field descriptions e 519
EMIOSOUDIS field descriptionso e 520
EMIOSUCDIS field descriptionso e 520
EMIOSA[N], EMIOSBI[n] and EMIOSALTA[n] values assignment. 522
EMIOSCIn] field descriptions 523
UC internalprescaler clock divider 525
UC input filter bitso 525
UC BSL bitS . .o 525
Channel mode selection e 526
EMIOSSIn] field descriptions« .. e 527
PIT Memory Map e e 563
Timer channel N 563
PITMCR field descriptions e e 564
LDVAL field descriptions. e 565
CVAL field desCriptions.o e 565
TCTRL field descriptions e e 566
TFLG field descriptions.o e 567
Configurations for starting normal conversion, 572
Relation between INPCMP and Tpjtayal « -+« -« « o v v v e mee e e ie e ae e 577
Relation between MCR.CTUEN, MCR.ADCCLKSEL, and TeTygyNG -+« + v« c v v v nn- 577
Max/Min ADC_clk frequency and related configuration settingsat5V/3.3V......... 577
ADC sampling and conversion timingat5V /3.3V. oL 578
Presampling voltage selection based on PREVALx fields 580
Values of WDGxH and WDGXL fields. e 581
ADC_0digital registers.o 583
MCR field descriptions e 587
MSR field descriptions 589
ISR field descriptions e 590
CEOCFR field desCriptions.ot e e 592
IMR field descriptions 593
CIMR field descriptions. 594
WTISR field descriptions e 594
WTIMR field descriptions 595
TRCx field descriptions. e 596
THRHLRX field descriptions e 596
PSCR field descriptions 597
PSR field descriptions. 598
CTR field desCriptions.o e 599
NCMR field descriptions 601
JCMR field desCriptionso e 602
DSDR field desCriptions e 603
PDEDR field descriptions 603
DoclD14629 Rev 9 Kys

RMO0017 List of tables
Table 309. CDR field descriptions e e 604
Table 310. CTU MEMOMY MAP . . o ottt et e et e e e e et e e e e e e e e e 606
Table 311. CTU_EVTCFGRXx field descriptions e e 606
Table 312. TrQQer SOUICE. . . . o o ottt e e e e e e e e e e e e e e e 607
Table 313. CTU-t0-ADC channel assignment e 609
Table 314. Flash memory features. e e 612
Table 315. CFlash module sectorization e 614
Table 316. DFlash module sectorization e 615
Table 317. CFlash TestFlash structure. e 615
Table 318. DFlash TestFlash structure. e 616
Table 319. Unique Device ID —Memory location e 616
Table 320. Shadow SECIOr StrUCTUIEt e e e e e 617
Table 321. CFlash registerso 619
Table 322. DFlash registerso 620
Table 323. CFLASH_MCR field descriptions e 621
Table 324. Array SPaCe SiZe oo 625
Table 325. Low address space configuration 625
Table 326. Mid address space configuration 625
Table 327. CFLASH_MCR bits set/clear priority levels 625
Table 328. CFLASH_LML field descriptions. e e 627
Table 329. CFLASH_NVLML field descriptions e 629
Table 330. CFLASH_SLL field descriptions e 631
Table 331. CFLASH_NVSLL field descriptions e 633
Table 332. CFLASH_LMS field descriptions e 636
Table 333. CFLASH_ADR field descriptions e 637
Table 334. CFLASH_ADR content: priority liSt. e 637
Table 335. CFLASH_UTO field descriptions e e 638
Table 336. CFLASH_UT1 field descriptions. e e 640
Table 337. CFLASH_UT2 field descriptions. e 641
Table 338. CFLASH_UMISRO field descriptions e 641
Table 339. CFLASH_UMISRL1 field descriptions e 642
Table 340. CFLASH_UMISR2 field descriptions e 643
Table 341. CFLASH_UMISR3 field descriptions e 643
Table 342. CFLASH_UMISRA4 field descriptions e 644
Table 343. NVPWDO field descriptions. e 645
Table 344. NVPWD1 field descriptions. e 645
Table 345. NVSCCO field desCriptionso e 646
Table 346. NVSCCL field descriptionso e e 647
Table 347. NVUSRO field descriptions. e 648
Table 348. DFLASH_MCR field descriptions e 649
Table 349. Array SPACE SiZe oo 652
Table 350. Low address space configuration 653
Table 351. Mid address space configuration 653
Table 352. DFLASH_MCR bits set/clear priority levels 653
Table 353. DFLASH_LML field descriptions. e e 655
Table 354. DFLASH_NVLML field descriptions e 656
Table 355. DFLASH_SLL field descriptions e 658
Table 356. DFLASH_NVSLL field descriptions e 660
Table 357. DFLASH_LMS field descriptions e 662
Table 358. DFLASH_ADR field descriptions e 663
Table 359. DFLASH_ADR content: priority liSt. 663
Table 360. DFLASH_UTO field descriptions. e e 664
IS73 DoclD14629 Rev 9 25/888

List of tables RMO0017

Table 361.
Table 362.
Table 363.
Table 364.
Table 365.
Table 366.
Table 367.
Table 368.
Table 369.
Table 370.
Table 371.
Table 372.
Table 373.
Table 374.
Table 375.
Table 376.
Table 377.
Table 378.
Table 379.
Table 380.
Table 381.
Table 382.
Table 383.
Table 384.
Table 385.
Table 386.
Table 387.
Table 388.
Table 389.
Table 390.
Table 391.
Table 392.
Table 393.
Table 394.
Table 395.
Table 396.
Table 397.
Table 398.
Table 399.
Table 400.
Table 401.
Table 402.
Table 403.
Table 404.
Table 405.
Table 406.
Table 407.
Table 408.
Table 409.
Table 410.
Table 411.
Table 412.

26/888

DFLASH_UTL1 field descriptionso e e 666
DFLASH_UT2 field descriptionso e e 667
DFLASH_UMISRO field descriptions e 668
DFLASH_UMISRLI field descriptions e 669
DFLASH_UMISR2 field descriptions e 669
DFLASH_UMISRS field descriptions e 670
DFLASH_UMISRA4 field descriptions e 671
Flash memory modify operations 672
Bit manipulation: Double words with the same ECCvalue. 680
Flash memory-related regions in the systemmemorymap 685
Platform flash memory controller 32-bitmemorymap 686
PFCRO field descriptions e 687
PFCRL1 field descriptions e 690
PFAPR field descriptions e 692
NVPFAPR field desCriptionso e 693
Platform flash memory controller stall-while-write interrupts. 699
Additional wait-state encoding 699
Extended additional wait-state encoding 700
Low power configuration. e 701
SRAM MEMOIY MAP . . . oottt e e e e e e e e e e e e 701
Number of wait states required for SRAM operations. oo, 703
Register protection memory Map oo e 707
SLBRN field descCriptions. 708
Soft lock bits vs. protected address 709
GCRfield desCriptions 709
Protected registerso 714
SWT MEMOIY MaAP . . oot e e e e e e 720
SWT_CR field desCriptions. 721
SWT_IR field descriptions e 723
SWT_TO Register field descriptions. e 723
SWT_WN Register field descriptions 724
SWT_SR field descriptions. 724
SWT_COfield descriptions. 725
SWT_SKfield descriptions 725
ECSM MEMOIY Map . . o oo e e e e 729
PCT field descriptions. 730
REV field desCriptions. 730
IOPMC field descriptions 731
MWCR field descriptions 732
MIR field descriptions 733
MUDCR field descriptions.o 734
ECR field descriptions 735
ESR field descriptions. 737
EEGR field descCriptions 738
PFEAR field descriptions 741
PFEMR field descriptions 741
PFEAT field descriptions e 742
PFEDR field descriptions i e 743
PREAR field descriptions 744
PRESR field descriptions e 744
RAM syndrome mapping for single-bit correctable errors., 744
PREMR field descriptions e 746
DoclD14629 Rev 9 Kys

RMO0017 List of tables
Table 413. PREAT field descriptions e 747
Table 414. PREDR field descriptionso e 748
Table 415. JTAG signal propertiesottt e 751
Table 416. Device ldentification Register Field Descriptions 752
Table 417. JTAG INSIUCHIONS ottt e e e e e e e 755
Table 418. e€200z0 OnCE Register Addressing. oo oo e e 759
Table 419. NDI Signal Reset State. e 764
Table 420. Nexus Debug Interface Registers. e 765
Table 421. DID field desSCriptions e 766
Table 422. PCR field descriptions 767
Table 423. DCL1 field desSCriptions. 769
Table 424. DC2 field desCriptions. 770
Table 425. DS field descriptions. 771
Table 426. RWCS field descriptions e 772
Table 427. Read/Write Access Status Bit Encoding. 773
Table 428. WT field descriptions e e 775
Table 429. JTAGC Instruction Opcodes to Enable Nexus Clients 776
Table 430. Nexus Client JTAG INSIUCHONSot tieeeeeeeaee 776
Table 431. NDI configuration Options 777
Table 432. SRC Packet ENCOAINGSottt e e 777
Table 433. Error Code Encoding (TCODE =8)ttt e 779
Table 434. Module base addreSSest 780
Table 435. Detailed regiSter Mapttt 781
Table 436. Document revision hiStory e 858
IS73 DoclD14629 Rev 9 27/888

List of figures RM0017

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

28/888

Register figure CONVENtIoONS i e e 41
SPC560Bx and SPC560Cx block diagram 49
LQFP 64-pin configurationt e e 55
LQFP 100-pin configuration (t0p VIEW)ottt 56
LQFP 144-pin configuration (t0p VIEW)ot 57
LBGA208 configuration.t e 58
Boot mode Selection 80
BOOL SECLOr SITUCTUIE. . . . o o e e e e e e e 81
Flash memory boot mode sequence i 82
Censorship control in flash memory bootmode 86
Censorship control in serialbootmode 87
BAM IOQIC flow e e 88
BAM censorship mode detection e 91
BAM serial boot mode flow for censorship enabled and private password. 93
Start address, VLE bit and download sizeinbytes., 94
LINFlexD bit timing in UART MOde. e e 95
FIEXCAN bit timingo e e e 97
SSCMblock diagram e 98
System Memory Configuration Register (SSCM_MEMCONFIG). 100
Error Configuration (SSCM_ERROR). e e 101
Debug Status Port Register (SSCM_DEBUGPORT) e 102
Password Comparison Register High Word (SSCM_PWCMPH) 104
Password Comparison Register Low Word (SSCM_PWCMPL). 104
SPC560Bx and SPC560Cx system clock generation. 106
Fast External Crystal Oscillator Control Register (FXOSC_CTL)................... 108
Slow External Crystal Oscillator Control Register (SXOSC CTL) 110
Low Power RC Control Register (SIRC_CTL) e e 112
FIRC Oscillator Control Register (FIRC_CTL) oottt e e 114
FMPLL block diagram. e e 115
Control Register (CR)ot e e e e 116
Modulation Register (MR).t e 118
FMPLL output clock division flow during progressive switching 120
Frequency modulation e 121
Clock Monitor Unit diagram e e e 123
Control Status Register (CMU_CSR)ottt e e e e i 126
Frequency Display Register (CMU_FDR). e e 127
High Frequency Reference Register FMPLL (CMU HFREFR) 127
Low Frequency Reference Register FMPLL (CMU_LFREFR)..................... 128
Interrupt status register (CMU _ISR)ttt e e e e e e 128
Measurement Duration Register (CMU_MDR) 129
MC_CGM BIoCK Diagramo e e e 131
Output Clock Enable Register (CGM_OC EN) i 137
Output Clock Division Select Register (CGM_OCDS SC). ..., 137
System Clock Select Status Register (CGM_SC SS) 138
System Clock Divider Configuration Registers (CGM_SC DCO0...2) 139
MC_CGM System Clock Generation OVEIVIEWot 141
MC_CGM Output Clock Multiplexer and PA[O] Generation 142
MC_MEBIOCK Diagram e 144

DoclD14629 Rev 9 ‘Yl

RM0017 List of figures
Figure 49. Global Status Register (ME_GS) e 154
Figure 50. Mode Control Register (ME_MCTL) e 156
Figure 51. Mode Enable Register (ME_ME) e 157
Figure 52. Interrupt Status Register (ME_IS). 159
Figure 53. Interrupt Mask Register (ME_IM) e 160
Figure 54. Invalid Mode Transition Status Register (ME_IMTS) 161
Figure 55. Debug Mode Transition Status Register (ME_DMTS) 162
Figure 56. Invalid Mode Transition Status Register (ME_IMTS) 164
Figure 57. TEST Mode Configuration Register (ME_TEST MC) 165
Figure 58. SAFE Mode Configuration Register (ME_SAFE_MC) 165
Figure 59. DRUN Mode Configuration Register (ME_DRUN_MC) 166
Figure 60. RUNO...3 Mode Configuration Registers (ME_RUNO...3 MC) 166
Figure 61. HALT Mode Configuration Register (ME_HALT MC) 167
Figure 62. STOP Mode Configuration Register ME_STOP_MC). 167
Figure 63. STANDBY Mode Configuration Register (ME_STANDBY _MC). 168
Figure 64. Peripheral Status Register 0 (ME_PSO) e 170
Figure 65. Peripheral Status Register 1 (ME_PS1) e 170
Figure 66. Peripheral Status Register 2 (ME_PS2) e 171
Figure 67. Run Peripheral Configuration Registers (ME_RUN_PCO0...7) 171
Figure 68. Run Peripheral Configuration Registers (ME_RUN_PCO0...7) 172
Figure 69. Low-Power Peripheral Configuration Registers (ME_LP_PCO...7) 173
Figure 70. Peripheral Control Registers (ME_PCTLO...143)ottt 173
Figure 71. MC_ME Mode Diagramttt e 176
Figure 72. MC_ME Transition Diagram e 189
Figure 73. MC_ME Application Example Flow Diagram 193
Figure 74. MC_RGM block diagram e 195
Figure 75. Functional Event Status Register (RGM_FES). 200
Figure 76. Destructive Event Status Register (RGM_DES). 201
Figure 77. Functional Event Reset Disable Register (RGM_FERD) 202
Figure 78. Destructive Event Reset Disable Register (RGM_DERD) 204
Figure 79. Functional Event Alternate Request Register (RGM_FEAR) 205
Figure 80. Destructive Event Alternate Request Register (RGM_DEAR) 206
Figure 81. Functional Event Short Sequence Register (RGM_FESS). 207
Figure 82. STANDBY Reset Sequence Register RGM_STDBY). 209
Figure 83. Functional Bidirectional Reset Enable Register RGM_FBRE) 209
Figure 84. MC_RGM state machine e 212
Figure 85. MC_PCU Block Diagramo e 218
Figure 86. Power Domain #0 Configuration Register (PCU_PCONFO). 221
Figure 87. Power Domain #1 Configuration Register (PCU_PCONF1)....................... 222
Figure 88. Power Domain #2 Configuration Register (PCU_PCONF2). 223
Figure 89. Power Domain Status Register (PCU_PSTAT) 223
Figure 90. MC_PCU Events During Power Sequences (non-STANDBY mode) 225
Figure 91. MC_PCU Events During Power Sequences (STANDBY mode). 226
Figure 92. Voltage Regulator Control Register (VREG_CTL) i 230
Figure 93. Power domain organizationt 232
Figure 94. WKPU block diagram 234
Figure 95. NMI Status Flag Register (NSR). e 236
Figure 96. NMI Configuration Register (NCR) e 237
Figure 97. Wakeup/Interrupt Status Flag Register (WISR) 238
Figure 98. Interrupt Request Enable Register (IRER) 239
Figure 99. Wakeup Request Enable Register (WRER) i 239
Figure 100. Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER). 240
IS73 DoclD14629 Rev 9 29/888

List of figures RM0017

Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.
Figure 144.
Figure 145.
Figure 146.
Figure 147.
Figure 148.
Figure 149.
Figure 150.
Figure 151.
Figure 152.

30/888

Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER). 240
Wakeup/Interrupt Filter Enable Register (WIFER) 241
Wakeup/Interrupt Pullup Enable Register (WIPUER). 241
NMI pad diagram 242
External interrupt pad diagram 244
RTC/API block diagram e 247
Clock gating for RTC CIOCKS o e 248
RTC Supervisor Control Register (RTCSUPV). e 249
RTC Control Register (RTCC)ottt e e e 250
RTC Status Register (RTCS)ot e e 252
RTC Counter Register (RTCCNT)o e e 253
Extended CAN dataframe 255
Control Register (CR)ottt e 256
Sample register N 257
€200z0h block diagram. 262
€200z0 SUPERVISOR mode programmodel SPRs 266
INTC block diagram e 269
INTC Module Configuration Register (INTC_MCR) 272
INTC Current Priority Register (INTC_CPR). e 272

INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES]=0....274
INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES]=1....274

INTC End-of-Interrupt Register (INTC_EOIR) 275
INTC Software Set/Clear Interrupt Register 0-3 (INTC_SSCIR[0:3]).o oo oot 275
INTC Software Set/Clear Interrupt Register 4—-7 (INTC_SSCIR[4:7]).o oo oot 275
INTC Priority Select Register 0-3 (INTC_PSR[0:3]). oo oo 276
INTC Priority Select Register 208-210 (INTC_PSR[208:210])o v o i et 276
Software vector mode handshaking timing diagram. 289
Hardware vector mode handshaking timing diagram 290
XBAR block diagram. 298
MPU block diagram 304
MPU Control/Error Status Register (MPU_CESR) 307
MPU Error Address Register, Slave Port n (MPU_EARN) 308
MPU Error Detail Register, Slave Portn (MPU_EDRN) 308
MPU Region Descriptor, Word 0 Register (MPU_RGDn.Word0) 310
MPU Region Descriptor, Word 1 Register (MPU_RGDn.Word1)................... 310
MPU Region Descriptor, Word 2 Register (MPU_RGDn.Word2)................... 311
MPU Region Descriptor, Word 3 Register (MPU_RGDn.Word3) 314
MPU RGD Alternate Access Control n (MPU_RGDAACN). it 315
MPU access evaluation MacCrottt e e e 318
System Integration Unit Lite block diagram 322
MCU ID Register #1 (MIDRL) oot 326
MCU ID Register #2 (MIDR2) oo e 327
Interrupt Status Flag Register (ISR) 328
Interrupt Request Enable Register (IRER) i 329
Interrupt Rising-Edge Event Enable Register (IREER). 330
Interrupt Falling-Edge Event Enable Register (IFEER). 330
Interrupt Filter Enable Register (IFER) e 331
Pad Configuration Registers (PCRX)o e 332
Pad Selection for Multiplexed Inputs Register (PSMIO_3) 334
Port GPIO Pad Data Output Register 0-3 (GPDOO0_3) ...t 337
Port GPIO Pad Data Input Register 0-3 (GPDIO_3).t 338
Interrupt Filter Maximum Counter Registers (IFMCO—-IFMC15) 341

DoclD14629 Rev 9 ‘Yl

RMO0017

List of figures

Figure 153.
Figure 154.
Figure 155.
Figure 156.
Figure 157.
Figure 158.
Figure 159.
Figure 160.
Figure 161.
Figure 162.
Figure 163.
Figure 164.
Figure 165.
Figure 166.
Figure 167.
Figure 168.
Figure 169.
Figure 170.
Figure 171.
Figure 172.
Figure 173.
Figure 174.
Figure 175.
Figure 176.
Figure 177.
Figure 178.
Figure 179.
Figure 180.
Figure 181.
Figure 182.
Figure 183.
Figure 184.
Figure 185.
Figure 186.
Figure 187.
Figure 188.
Figure 189.
Figure 190.
Figure 191.
Figure 192.
Figure 193.
Figure 194.
Figure 195.
Figure 196.
Figure 197.
Figure 198.
Figure 199.
Figure 200.
Figure 201.
Figure 202.
Figure 203.
Figure 204.

S74

Interrupt Filter Clock Prescaler Register (IFCPR). it 342
Data Port example arrangement showing configuration for different port width accesses 343
External interrupt pad diagram e 344
12C block diagram 346
12C Bus Address Register (IBAD) voee e e et e 347
1°C Bus Frequency Divider Register (IBFD) e 347
SDA hOld time. . . . e 349
SCLdividerand SDA oI e 350
12C Bus Control Register (IBCR)ttt e e et e 354
12C Bus Status Register (IBSR)vvvt ettt et e 355
12C Bus Data 1/O Register (IBDR). 356
1°C Bus Interrupt Config Register (IBIC). 357
12C bus transmission SIgNAlS . .. 358
Start and stop conditions 358
12C bus clock SYNChronization. e 360
Flow-Chart of Typical 12c Interrupt Routine 366
LIN topology Network 369
LINFlex block diagram 369
LINFlex operating modesttt e e e 371
LINFlexinloop backmode 372
LINFlexinselftestmode e 373
LIN control register 1 (LINCRL) e e 374
LIN interrupt enable register (LINIER) e 377
LIN status register (LINSR). e 379
LIN error status register (LINESR) e 382
UART mode control register (UARTCR).t e 384
UART mode status register (UARTSR) e 385
LIN timeout control status register (LINTCSR) 387
LIN output compare register (LINOCR) e 388
LIN timeout control register (LINTOCR) e 388
LIN fractional baud rate register (LINFBRR). 389
LIN integer baud rate register (LINIBRR) 390
LIN checksum field register (LINCFR) e 390
LIN control register 2 (LINCR2) e e 391
Buffer identifier register (BIDR). e 392
Buffer data register LSB (BDRL) 393
Buffer data register MSB (BDRM) 394
Identifier filter enable register (IFER) 394
Identifier filter match index (IFMI) 395
Identifier filter mode register (IFMR) 396
Identifier filter control register (IFCR2N) e 397
Identifier filter control register (IFCR2n + 1) e 398
UART mode 8-bitdataframe e 399
UART mode 9-bitdataframe e 399
Filter configuration—register organization 406
Identifier match index 407
LIN synch field measurement 408
Header and response timeoutttt 410
FlexCAN block diagram e 412
Message Buffer Structure. 417
RX FIFO StrUCIUrE. . . . o oo e e 421
ID Table O — 7 . 421

DoclD14629 Rev 9 31/888

List of figures RM0017

Figure 205.
Figure 206.
Figure 207.
Figure 208.
Figure 209.
Figure 210.
Figure 211.
Figure 212.
Figure 213.
Figure 214.
Figure 215.
Figure 216.
Figure 217.
Figure 218.
Figure 219.
Figure 220.
Figure 221.
Figure 222.
Figure 223.
Figure 224.
Figure 225.
Figure 226.
Figure 227.
Figure 228.
Figure 229.
Figure 230.
Figure 231.
Figure 232.
Figure 233.
Figure 234.
Figure 235.
Figure 236.
Figure 237.
Figure 238.
Figure 239.
Figure 240.
Figure 241.
Figure 242.
Figure 243.
Figure 244.
Figure 245.
Figure 246.
Figure 247.
Figure 248.
Figure 249.
Figure 250.
Figure 251.
Figure 252.
Figure 253.
Figure 254.
Figure 255.
Figure 256.

32/888

Module Configuration Register (MCR) e 423
Control Register (CTRL)o e e 427
Free Running Timer (TIMER) e e 430
Rx Global Mask Register (RXGMASK).o e 431
Error Counter Register (ECR). 433
Error and Status Register (ESR) 433
Interrupt Masks 2 Register (IMASK2) 436
Interrupt Masks 1 Register (IMASKL) e 437
Interrupt Flags 2 Register (IFLAG2)o e 437
Interrupt Flags 1 Register (IFLAGL)o e e 438
Rx Individual Mask Registers (RXIMRO — RXIMR63). 439
CAN engine clocking scheme. 449
Segments within the bittime. 450
Arbitration, match and move time wWindows i 451
DSPI block diagram 456
DSPIWIth QUEUES o oo 457
DSPI Module Configuration Register (DSPIX_MCR) 462
DSPI Transfer Count Register (DSPIX_TCR)o e 465
DSPI Clock and Transfer Attributes Registers 0-5 (DSPIX_CTARN) 466
DSPI Status Register (DSPIX_SR) 473
DSPI Interrupt Request Enable Register (DSPIX_RSER). 475
DSPI PUSH TX FIFO Register (DSPIX_PUSHR) e 477
DSPI POP RX FIFO Register (DSPIX_POPR)o 479
DSPI Transmit FIFO Register 0-3 (DSPIX_TXFRN). o 480
DSPI Receive FIFO Registers 0-3 (DSPIX_ RXFRN) 480
SPI serial protocol OVerview 481
DSPI start and stop state diagram e 483
Communications clock prescalersand scalers. 487
Peripheral chip select strobe timing 489
DSPI transfer timing diagram (MTFE =0, CPHA=0,FMSZ=8) 491
DSPI transfer timing diagram (MTFE =0, CPHA =1, FMSZ=8) 492
DSPI modified transfer format (MTFE = 1, CPHA =0, fgck = fgyg /4)ot 493
DSPI modified transfer format (MTFE = 1, CPHA =1, fgck = fgyg/4)o 494
Example of non-continuous format (CPHA =1, CONT=0)........... 495
Example of continuous transfer (CPHA =1, CONT =1)............ 495
Polarity switching between frames 496
Continuous SCK timing diagram (CONT=0)ot e 497
Continuous SCK timing diagram (CONT=1).ot 497
TX FIFO pointers and COUNLEr e e 503
Interaction between timers and relevant peripherals 506
STM Control Register (STM_CR)o 511
STM Count Register (STM_CNT). e 511
STM Channel Control Register (STM_CCRN) e 512
STM Channel Interrupt Register (STM_CIRN) e 512
STM Channel Compare Register (STM_CMPN). 513
Channel configuration. 515
eMIOS Module Configuration Register (EMIOSMCR) 517
eMIOS Global FLAG (EMIOSGFLAG) Register.ot 519
eMIOS Output Update Disable (EMIOSOUDIS) Register. 519
eMIOS Enable Channel (EMIOSUCDIS) Register 520
eMIOS UC A Register (EMIOSA[N]) . ..ottt e 521
eMIOS UC B Register (EMIOSBIN]) - - . v vttt e e 521

DoclD14629 Rev 9 ‘Yl

RMO0017

List of figures

Figure 257.
Figure 258.
Figure 259.
Figure 260.
Figure 261.
Figure 262.
Figure 263.
Figure 264.
Figure 265.
Figure 266.
Figure 267.
Figure 268.
Figure 269.
Figure 270.
Figure 271.
Figure 272.
Figure 273.
Figure 274.
Figure 275.
Figure 276.
Figure 277.
Figure 278.
Figure 279.
Figure 280.
Figure 281.
Figure 282.
Figure 283.
Figure 284.
Figure 285.
Figure 286.
Figure 287.
Figure 288.
Figure 289.
Figure 290.
Figure 291.
Figure 292.
Figure 293.
Figure 294.
Figure 295.
Figure 296.
Figure 297.
Figure 298.
Figure 299.
Figure 300.
Figure 301.
Figure 302.
Figure 303.
Figure 304.
Figure 305.
Figure 306.
Figure 307.
Figure 308.

S74

eMIOS UC Counter Register (EMIOSCNTIN]) vv v vttt 522
eMIOS UC Control Register (EMIOSCIN]) . . . oo oo e 523
eMIOS UC Status Register (EMIOSS[N]) . .« oo oo 527
eMIOS UC Alternate A register (EMIOSALTA[N]). . . oot e it 528
Single action input capture with rising edge triggering example. 530
Single action input capture with both edges triggering example. 530
SAOC example with EDPOL value being transferred to the output flip-flop. 531
SAOC example toggling the output flip-flop o 531
SAOC example with flag behavior 531
Input pulse width measurement example 532
B1 and Al updates at EMIOSA[n] and EMIOSB[n]reads 533
Input period measurement example e 534
Al and B1 updates at EMIOSA[n] and EMIOSB[n]reads 534
Double action output compare with FLAG set on the second match 535
Double action output compare with FLAG set on both matches. 536
DAOC with transfer disablingexample. 536
Modulus Counter Up mode example 538
Modulus Counter Up/Down mode example 538
Modulus Counter Buffered (MCB) Up Countmode 539
Modulus Counter Buffered (MCB) Up/Downmode. 540
MCB Mode Al Register Update in Up Countermode 540
MCB Mode Al Register Update in Up/Down Countermode 541
OPWFMB Al and B1 match to Output RegisterDelay. 542
OPWFMB Mode with A1 =0 (0% dutycycle). e 543
OPWFMB Al and Bl registersupdate andflags oo i 544
OPWFMB mode from 100% to 0% duty cycle 544
OPWMCB Al and Blregistersload. 546
OPWMCB with lead dead time inSertion. e ae 547
OPWMCB with trail dead time insertion e 548
OPWMCB with 100% Duty Cycle (Al=4andB1=3)......... ..., 549
OPWMB mode matchesandflags i 551
OPWMB mode with 0% duty cycle e 552
OPWMB mode from 100% to 0% duty cycle 552
OPWMT exampleo e e 555
OPWMT with 0% Duty Cycle e 555
OPWMT with 100% duty CyCleo e e 556
Input programmable filter submodule diagram i 556
Input programmable filter example 557
Time base period when running in the fastest prescalerratio 559
Time base generation with external clock and clear on match start. 560
Time base generation with internal clock and clearon match start 560
Time base generation with clearon matchend 561
PIT block diagram. 562
PIT Module Control Register (PITMCR) e 564
Timer Load Value Register (LDVAL) e e 564
Current Timer Value Register (CVAL) e 565
Timer Control Register (TCTRL).o e 566
Timer Flag Register (TFLG)o e e 566
Stopping and starting atimer 567
Modifying running timer period 568
Dynamically settinganew load value. 568
ADC implementation. e 571

DoclD14629 Rev 9 33/888

List of figures RM0017

Figure 309.
Figure 310.
Figure 311.
Figure 312.
Figure 313.
Figure 314.
Figure 315.
Figure 316.
Figure 317.
Figure 318.
Figure 319.
Figure 320.
Figure 321.
Figure 322.
Figure 323.
Figure 324.
Figure 325.
Figure 326.
Figure 327.
Figure 328.
Figure 329.
Figure 330.
Figure 331.
Figure 332.
Figure 333.
Figure 334.
Figure 335.
Figure 336.
Figure 337.
Figure 338.
Figure 339.
Figure 340.
Figure 341.
Figure 342.
Figure 343.
Figure 344.
Figure 345.
Figure 346.
Figure 347.
Figure 348.
Figure 349.
Figure 350.
Figure 351.

Figure 352.
Figure 353.
Figure 354.
Figure 355.
Figure 356.
Figure 357.
Figure 358.
Figure 359.

34/888

Normal conversion flow 573
Injected sample/CoONVErsion SEQUENCE oo vttt i i e e 574
Sampling and conversion timings.o 576
Presampling SEQUENCEo 580
Presampling sequence with PRECONV = 1. 580
Guarded areat e 581
Main Configuration Register (MCR) e 587
Main Status Register (MSR) 589
Interrupt Status Register (ISR) 590
Channel Pending Register 0 (CEOCFRO) e 591
Channel Pending Register 1 (CEOCFR1) i 591
Channel Pending Register 2 (CEOCFR2) e 592
Interrupt Mask Register (IMR) e 592
Channel Interrupt Mask Register 0 (CIMRO). e 593
Channel Interrupt Mask Register 1 (CIMR1). e 593
Channel Interrupt Mask Register 2 (CIMR2). e 594
Watchdog Threshold Interrupt Status Register (WTISR) 594
Watchdog Threshold Interrupt Mask Register (WTIMR). 595
Threshold Control Register (TRCX, X =[0...3]) .+« « o oo oot e 595
Threshold Register (THRHLR[O:3])ttt e 596
Presampling Control Register (PSCR) e 597
Presampling Register 0 (PSRO) 598
Presampling Register 1 (PSR1) 598
Presampling Register 2 (PSR2) 598
Conversion Timing Registers CTR[O] oo oo e 599
Normal Conversion Mask Register 0 (NCMRO) 600
Normal Conversion Mask Register 1 (NCMR1) 600
Normal Conversion Mask Register 2 (NCMR2) 600
Injected Conversion Mask Register 0 (JCMRO) 601
Injected Conversion Mask Register 1 (JCMR1) 601
Injected Conversion Mask Register 2 (JCMR2) i 602
Decode Signals Delay Register (DSDR). 602
Power-Down Exit Delay Register (PDEDR) e 603
Channel Data Registers (CDR[0...26])« oot i i e 604
Cross Triggering Unit block diagram 605
Event Configuration Registers (CTU_EVTCFGRX) (x=0...63) 606
Flash memory architecture 611
CFlash and DFlash module structures e 613
CFlash Module Configuration Register (CFLASH_MCR). 621
CFlash Low/Mid Address Space Block Locking Register (CFLASH_LML). 626

CFlash Nonvolatile Low/Mid address space block Locking register (CFLASH_NVLML) . 629
CFlash Secondary Low/mid address space block Locking Register (CFLASH_SLL) ... 631
CFlash Nonvolatile Secondary Low/mid address space block Locking register (CFLASH_N

VS Lottt 633
CFlash Low/Mid address space block Select register (CFLASH_LMS) 635
CFlash Address Register (CFLASH_ADR).o 636
CFlash User Test O register (CFLASH_UTO)t 638
CFlash User Test 1 register (CFLASH_UT1)t e 640
CFlash User Test 2 register (CFLASH_UT2) e 640
CFlash User Multiple Input Signature Register 0 (CFLASH_UMISRO). 641
CFlash User Multiple Input Signature Register 1 (CFLASH_UMISR1). 642
CFlash User Multiple Input Signature Register 2 (CFLASH_UMISR2). 642

DoclD14629 Rev 9 ‘Yl

RM0017 List of figures
Figure 360. CFlash User Multiple Input Signature Register 3 (CFLASH_UMISR3). 643
Figure 361. CFlash User Multiple Input Signature Register 4 (CFLASH_UMISR4). 644
Figure 362. CFlash Nonvolatile Private Censorship Password 0 Register (NVPWDQ) 644
Figure 363. CFlash Nonvolatile Private Censorship Password 1 Register (NVPWD1)............ 645
Figure 364. CFlash Nonvolatile System Censorship Control O register (NVSCCO)............... 646
Figure 365. CFlash Nonvolatile System Censorship Control 1 register (NVSCC1)............... 647
Figure 366. CFlash Nonvolatile User Options register (NVUSRO) 648
Figure 367. DFlash Module Configuration Register (DFLASH_MCR). 649
Figure 368. DFlash Low/Mid Address Space Block Locking Register (DFLASH_LML). 654
Figure 369. DFlash Nonvolatile Low/Mid address space block Locking register (DFLASH_NVLML) . 656
Figure 370. DFlash Secondary Low/mid address space block Locking register (DFLASH_SLL) 658
Figure 371. DFlash Nonvolatile Secondary Low/mid address space block Locking register (DFLASH_N
VS Lottt 660
Figure 372. DFlash Low/Mid Address Space Block Select Register (DFLASH_LMS). 662
Figure 373. DFlash Address Register (DFLASH_ADR).ot 663
Figure 374. DFlash User Test O register (DFLASH_UTO)ottt e 664
Figure 375. DFlash User Test 1 register (DFLASH_UT1)ot e 666
Figure 376. DFlash User Test 2 register (DFLASH_UT2) 667
Figure 377. DFlash User Multiple Input Signature Register 0 (DFLASH_UMISRO). 668
Figure 378. DFlash User Multiple Input Signature Register 1 (DFLASH_UMISR1). 668
Figure 379. DFlash User Multiple Input Signature Register 2 (DFLASH_UMISR2). 669
Figure 380. DFlash User Multiple Input Signature Register 3 (DFLASH_UMISR3). 670
Figure 381. DFlash User Multiple Input Signature Register 4 (DFLASH_UMISR4). 671
Figure 382. Power Architecture e200z0h RPP reference platform block diagram. 682
Figure 383. PFlash Configuration Register 0 (PFCRO) 686
Figure 384. PFlash Configuration Register 1 (PFCR1) e 689
Figure 385. PFlash Access Protection Register (PFAPR) i 692
Figure 386. Nonvolatile Platform Flash Access Protection Register (NVPFAPR) 693
Figure 387. Register Protection block diagram 705
Figure 388. Register protection memory diagramt 706
Figure 389. Soft Lock Bit Register (SLBRN) 708
Figure 390. Global Configuration Register (GCR)t e e 709
Figure 391. Change Lock Settings Directly Via Area #4 e 711
Figure 392. Change Lock Settings for 16-bit Protected Addresses. 711
Figure 393. Change Lock Settings for 32-bit Protected Addresses. 712
Figure 394. Change Lock Settings for Mixed Protection 712
Figure 395. Enable Locking Via Mirror Module Space (Area #3). 712
Figure 396. Enable Locking for Protected and Unprotected Addresses 713
Figure 397. SWT Control Register (SWT_CR) e 721
Figure 398. SWT Interrupt Register (SWT_IR) e 722
Figure 399. SWT Time-Out Register (SWT_TO)ottt e 723
Figure 400. SWT Window Register (SWT_WN) e 723
Figure 401. SWT Service Register (SWT_SR) e 724
Figure 402. SWT Counter Output Register (SWT_CO)ttt 724
Figure 403. SWT Service Register (SWT_SK) e 725
Figure 404. Processor Core Type Register (PCT).o e 730
Figure 405. SoC-Defined Platform Revision Register (REV). 730
Figure 406. IPS On-Platform Module Configuration Register (IOPMC). 731
Figure 407. Miscellaneous Wakeup Control (MWCR) Register. 732
Figure 408. Miscellaneous Interrupt (MIR) Register e 733
Figure 409. Miscellaneous User-Defined Control (MUDCR) Register. 734
Figure 410. ECC Configuration (ECR) Register e 735
IS73 DoclD14629 Rev 9 35/888

List of figures RM0017

Figure 411.
Figure 412.
Figure 413.
Figure 414.
Figure 415.
Figure 416.
Figure 417.
Figure 418.
Figure 419.
Figure 420.
Figure 421.
Figure 422.
Figure 423.
Figure 424.
Figure 425.
Figure 426.
Figure 427.
Figure 428.
Figure 429.
Figure 430.
Figure 431.
Figure 432.
Figure 433.
Figure 434.
Figure 435.
Figure 436.
Figure 437.
Figure 438.
Figure 439.
Figure 440.
Figure 441.

36/888

ECC Status Register (ESR)ttt 737
ECC Error Generation Register (EEGR). 738
Platform Flash ECC Address Register (PFEAR) 741
Platform Flash ECC Master Number Register (PFEMR) 741
Platform Flash ECC Attributes Register (PFEAT). 742
Platform Flash ECC Data Register (PFEDR) i 743
Platform RAM ECC Address Register (PREAR). e 743
Platform RAM ECC Syndrome Register (PRESR) 744
Platform RAM ECC Master Number Register (PREMR) 746
Platform RAM ECC Attributes Register (PREAT). 747
Platform RAM ECC Data Register (PREDR) 748
JTAG Controller Block Diagram e 749
5-bit Instruction Register. 752
Device Identification Register 752
Shifting data through aregister. 753
IEEE 1149.1-2001 TAP controller finite state machine. 754
€200z0 ONCE Block Diagram.ottt e e 758
OnCE Command Register (OCMD) i e 759
NDI Functional Block Diagram 761
NDI Implementation Block Diagram e 762
Nexus Device ID (DID) RegiSter.ot e 766
Port Configuration Register (PCR) 767
Development Control Register 1 (DCL)ttt e e 769
Development Control Register 2 (DC2)ttt e e 770
Development Status (DS) Register. e 771
Read/Write Access Control/Status (RWCS) Register. 772
Read/Write Access Address (RWA) Register. e 773
Read/Write Access Data (RWD) Register 774
Watchpoint Trigger (WT) Register e 774
Ownership Trace Message Format e 778
Error Message Format e 779
DoclD14629 Rev 9 Kys

RMO0017 Preface
1 Preface
1.1 Overview
The primary objective of this document is to define the functionality of the SPC560Bx and
SPC560Cx microcontroller for use by software and hardware developers. The SPC560Bx
and SPC560Cx is built on Power Architecture® technology and integrates technologies that
are important for today’s automotive vehicle body applications.
The information in this book is subject to change without notice, as described in the
disclaimers on the title page. As with any technical documentation, it is the reader’s
responsibility to be sure he or she is using the most recent version of the documentation.
To locate any published errata or updates for this document, visit the ST Web site at
www.st.com.
1.2 Audience
This manual is intended for system software and hardware developers and applications
programmers who want to develop products with the SPC560Bx and SPC560Cx device. Itis
assumed that the reader understands operating systems, microprocessor system design,
basic principles of software and hardware, and basic details of the Power Architecture.
1.3 Guide to this reference manual
Table 1. Guide to this reference manual
Chapter
Description Functional group
Title
General overview, family description, feature list and
. . . . Introductory
2 | Introduction information on how to use the reference manual in .
. - . . material
conjunction with other available documents.
3 | Memory Map Memory map of all peripherals and memory. Memory map
4 | Signal description Pinout diagrams and descriptions of all pads. Signals
Microcontroller Boot
— Describes what configuration is required by the
user and what processes are involved when the
— Boot mechanism microcontroller boots from flash memory or serial
boot modes.
S — Describes censorship. Boot
— Boot Assist Module (BAM) Features of BAM code and when it's used.
B Systgm Stgtus and Reports information about current state and
Configuration Module configuration of the microcontroller
(SSCM) 9 :
1S7 DoclD14629 Rev 9 37/888

Preface

RMO0017

Table 1. Guide to this reference manual(Continued)

Chapter
Description Functional group
Title
— Covers configuration of all of the clock sources in
6 | Clock Description the system.
— Describes the Clock Monitor Unit (CMU).
. Determines how the clock sources are used
Clock Generation Module : . L
7 (including clock dividers) to generate the reference
(MC_CGM) 8
clocks for all of the modules and peripherals.
Determines the clock source, memory, power and
8 | Mode Entry Module (MC_ME) | peripherals that are available in each operating
mode.
. Manages the process of entering and exiting reset,
g |Reset Generation Module allows reset sources to be configured (including Clocks and power
(MC_RGM) \) .
LVD's) and provides status reporting.
Controls the power to different power domains within (mc(;udes ?perat!ng
10 | Power Control Unit (MC_PCU) |the microcontroller (allowing SRAM to be selectively mo detfon |gurat‘|(on
powered in STANDBY mode). and how to wake
up from low power
11 Voltage Regulators and Power | Information on voltage regulator implementation. mode)
Supplies Includes enable bit for 5 V LVD (see also MC_RGM).
Always-active analog block. Details configuration of 2
12 | Wakeup Unit (WKPU) internal (API/RTC) and 30 external (pin) low power
mode wakeup sources.
13 Real Time Clock / Autonomous | Details configuration and operation of timers that are
Periodic Interrupt (RTC/API) predominately used for system wakeup.
Details on how to configure the CAN sampler which is
14 | CAN Sampler used to capture the |d_ent|f|er frame_of_a CAN
message when the microcontroller is in low power
mode.
15 |e200z0h Core description Overview on cores. For_ more details consult the core
reference manuals available on www.st.com.
Provides the configuration and control of all of the
16 |Interrupt Controller (INTC) external interrupts (non-core) that are then routed to
the IVORA4 core interrupt vector. Core platform
i i modules
17 | Crossbar Switch (XBAR) Describes the cqnnectlons of the XBAR masters and
slaves on this microcontroller.
The MPU sits on the slave side of the XBAR and
18 | Memory Protection Unit (MPU) | allows highly configurable control over all master
accesses to the memory.
System Integration Unit Lite How _to co_nflgur_e the pins or ports for input or output
19 (SIUL) functions including external interrupts and DSI Ports
serialization.
38/888 DoclD14629 Rev 9 Kys

RMO0017 Preface
Table 1. Guide to this reference manual(Continued)
Chapter
Description Functional group
Title
20 Inter-Integrated Circuit Bus
Controller Module (12C)
21 | LIN Controller (LINFlex) These chapters describe the configuration and Communication
22 | FlexCAN operation of the various communication modules. modules
23 Deserial Serial Peripheral
Interface (DSPI)
Details the configuration and operation of the ADC
modules as well as detailing the channels that are
Analog-to-Didital Converter shared between the 10-bit and 12-bit ADC. The ADC
25 || ADC)g 9 is tightly linked to the INTC, PIT_RTI and CTU. When
used in conjunction with these other modules, the
CPU overhead for an ADC conversion is significantly ADC system
reduced.
The CTU allows an ADC conversion to be
. . . automatically triggered based on an eMIOS event
26 | Cross Triggering Unit (CTU) (like a PWM output going high) or a PIT_RTI event
with no CPU intervention.
Details the code and data flash memory structure
27 | Flash Memory (W|th ECC), blgck sizes anq the flash memory port
configuration, including wait states, line buffer
configuration and pre-fetch control. Memory
Details the structure of the SRAM (with ECC). There
28 | Static RAM (SRAM) are no user configurable registers associated with the
SRAM.
Certain registers in each peripheral can be protected
from further writes using the register protection
29 |Register Protection mechanism detailed in this section. Registers can
either be configured to be unlocked via a soft lock bit
or locked unit the next reset.
The SWT offers a selection of configurable modes
Software Watchdog Timer th_at can be used to monitor the oper_atlon of_the Integrity
30 (SWT) microcontroller and /or reset the device or trigger an
interrupt if the SWT is not correctly serviced. The
SWT is enabled out of reset.
Error Correction Status Module Pr0_/|de_s |nformat|on about the Ia_st reset,_general
31 (ECSM) device information, system fault information and
detailed ECC error information.
IEEE 1149.1 Test Access Port .
32 Controller (JTAGC) Used for boundary scan as well as device debug.
Debug
33 Nexus Development Interface | Provides advanced debug features including non
(NDI) intrusive trace capabilities.
1S7 DoclD14629 Rev 9 39/888

Preface

RMO0017

Table 1. Guide to this reference manual(Continued)

Chapter

Title

Description

Functional group

Timers

— Technical overview

Gives an overview of the available system timer
modules showing links to other modules as well as
tables detailing the external pins associated with
eMIOS timer channels.

oa | System Timer Module (STM)

A simple 32-bit free running counter with 4 compare
channels with interrupt on match. It can be read at
any time; this is very useful for measuring execution
times.

— Enhanced Modular 10
Subsystem (eMIOS)

Highly configurable timer module(s) supporting PWM,
output compare and input capture features. Includes
interrupt support.

— Periodic Interrupt Timer
(PIT)

Set of 32-bit countdown timers that provide periodic
events (which can trigger an interrupt) with automatic
re-load.

Timer modules

A | Register Map

Summarizes the registers on this microcontroller

Register summary

Revision history

Summarizes the changes between each successive
revision of this reference manual

Revision history
information

1.4 Register description conventions

The register information for SPC560Bx and SPC560Cx is presented in:
e Memory maps containing:

— An offset from the module’s base address

— The name and acronym/abbreviation of each register

— The page number on which each register is described

e Register figures

o Field-description tables

. Associated text

The register figures show the field structure using the conventions in Figure 1.

40/888

DoclD14629 Rev 9

3

RMO0017 Preface
R| O 1 R| FIELD1 FIELD2 R
FIELD
w W W
Reserved bits Read-only fields Read/write fields
R 0 0 0 R| FIELD
W | FIELD1 FIELD2 W| wlc
Write-only fields Write 1 to clear field
(field will always read 0)
Figure 1. Register figure conventions
The numbering of register bits and fields on SPC560Bx and SPC560Cx is as follows:
e Register bit numbers, shown at the top of each figure, use the standard
Power Architecture bit ordering (0, 1, 2, ...) where bit 0 is the most significant bit (MSB).
e Multi-bit fields within a register use conventional bit ordering (..., 2, 1, 0) where bit 0 is
the least significant bit (LSB).
1.5 References
In addition to this reference manual, the following documents provide additional information
on the operation of the SPC560Bx and SPC560Cx:
e |EEE-ISTO 5001-2003 Standard for a Global Embedded Processor Interface (Nexus)
e |EEE 1149.1-2001 standard - IEEE Standard Test Access Port and Boundary-Scan
Architecture
1.6 How to use the SPC560Bx and SPC560Cx documents
This section:
e Describes how the SPC560Bx and SPC560Cx documents provide information on the
microcontroller
e Makes recommendations on how to use the documents in a system design
1.6.1 The SPC560Bx and SPC560Cx document set

3

The SPC560Bx and SPC560Cx document set comprises:

e This reference manual (provides information on the features of the logical blocks on the
device and how they are integrated with each other)

e The device data sheet (specifies the electrical characteristics of the device)
e The device product brief

The following reference documents (available online at www.st.com) are also available to
support the CPU on this device:

e Programmer’s Reference Manual for Book E Processors
e Variable-Length Encoding (VLE) Extension - Programming Interface Manual

DoclD14629 Rev 9 41/888

Preface RMO0017

The aforementioned documents describe all of the functional and electrical characteristics of
the SPC560Bx and SPC560Cx microcontroller.

Depending on your task, you may need to refer to multiple documents to make design
decisions. However, in general the use of the documents can be divided up as follows:

e Use the reference manual (this document) during software development and when
allocating functions during system design.

e Use the data sheet when designing hardware and optimizing power consumption.

e Use the CPU reference documents when doing detailed software development in
assembly language or debugging complex software interactions.

1.6.2 Reference manual content

The content in this document focuses on the functionality of the microcontroller rather than
its performance. Most chapters describe the functionality of a particular on-chip module, such
as a CAN controller or timer. The remaining chapters describe how these modules are
integrated into the memory map, how they are powered and clocked, and the pin-out of the
device.

In general, when an individual module is enabled for use all of the detail required to configure
and operate it is contained in the dedicated chapter. In some cases there are multiple
implementations of this module, however, there is only one chapter for each type of module
in use. For this reason, the address of registers in each module is normally provided as an
offset from a base address which can be found in Chapter 3: Memory Map. The benefit of
this approach is that software developed for a particular module can be easily reused on this
device and on other related devices that use the same modules.

The steps to enable a module for use varies but typically these require configuration of the
integration features of the microcontroller. The module will normally have to be powered and
enabled at system level, then a clock may have to be explicitly chosen and finally if required
the input and output connections to the external system must be configured.

The primary integration chapters of the reference manual contain most of the information
required to enable the modules. There are special cases where a chapter may describe
module functionality and some integration features for convenience — for example, the
microcontroller input/output (SIUL) module. Integration and functional content is provided in
the manual as shown in Table 2.

Table 2. Reference manual integration and functional content

Chapter Integration content Functional content

— The main features on chip

Introduction — A summary of the functions provided by | —
each module

How the memory map is allocated,

including:

— Internal RAM

Memory Map — Flash memory -

— External memory-mapped resources
and the location of the registers used by
the peripherals®

3

42/888 DoclD14629 Rev 9

RMO0017 Preface
Table 2. Reference manual integration and functional content(Continued)
Chapter Integration content Functional content

How the signals from each of the modules
Signal Description are combined and brought to a particular |—

pin on a package
Boot Assist Module CPU boot sequence from reset _Implementatlon of the .bOOt options if

internal flash memory is not used
. Clockl_ng ar(_:hltecture of the device (which Description of operation of different clock
Clock Description clock is available for the system and each
; sources

peripheral)
Interrupt Controller Interrupt vector table Operation of the module
Mode Entry Module Module numbering for control and status | Operation of operating modes

. . How input signals are mapped to

a)t/:tem Integration Unit individual modules including external Operation of GPIO

interrupt pins
Voltage regu_lators and Power distribution to the MCU —
power supplies
Wakeup Unit Allocation of inputs to the Wakeup Unit Operation of the wakeup feature

1. To find the address of a register in a particular module take the start address of the module given in the memory map and
add the offset for the register given in the module chapter.

1.7

1.7.1

3

Using the SPC560Bx and SPC560Cx

There are many different approaches to designing a system using the SPC560Bx and
SPC560Cx so the guidance in this section is provided as an example of how the documents
can be applied in this task.

Familiarity with the SPC560Bx and SPC560Cx modules can help ensure that its features are
being optimally used in a system design. Therefore, the current chapter is a good starting
point. Further information on the detailed features of a module are provided within the module
chapters. These, combined with the current chapter, should provide a good introduction to
the functions available on the MCU.

Hardware design

The SPC560Bx and SPC560Cx requires that certain pins are connected to particular power
supplies, system functions and other voltage levels for operation.

The SPC560Bx and SPC560Cx internal logic operates from 1.2 V (hominal) supplies that are
normally supplied by the on-chip voltage regulator from a5V or 3.3 V supply. The 3.3-5V
(x10%) supply is also used to supply the input/output pins on the MCU. Chapter 4: Signal
description, describes the power supply pin names, numbers and their purpose. For more
detail on the voltage supply of each pin, see Chapter 11: Voltage Regulators and Power
Supplies. For specifications of the voltage ranges and limits and decoupling of the power
supplies see the SPC560Bx and SPC560Cx data sheet.

Certain pins have dedicated functions that affect the behavior of the MCU after reset. These
include pins to force test or alternate boot conditions and debug features. These are
described in Chapter 4: Signal description, and a hardware designer should take care that
these pins are connected to allow correct operation.

DoclD14629 Rev 9 43/888

Preface

RMO0017

1.7.2

1.7.3

44/888

Beyond power supply and pins that have special functions there are also pins that have
special system purposes such as oscillator and reset pins. These are also described in
Chapter 4: Signal description. The reset pin is bidirectional and its function is closely tied to
the reset generation module [Chapter 9: Reset Generation Module (MC_RGM)"]. The crystal
oscillator pins are dedicated to this function but the oscillator is not started automatically after
reset. The oscillator module is described in Chapter 6: Clock Description, along with the
internal clock architecture and the other oscillator sources on chip.

Input/output pins

The majority of the pins on the MCU are input/output pins which may either operate as
general purpose pins or be connected to a particular on-chip module. The arrangement
allows a function to be available on several pins. The system designer should allocate the
function for the pin before connecting to external hardware. The software should then choose
the correct function to match the hardware. The pad characteristics can vary depending on
the functions on the pad. Chapter 4: Signal description, describes each pad type (for
example, S, M, or J). Two pads may be able to carry the same function but have different pad
types. The electrical specification of the pads is described in the data sheet dependent on the
function enabled and the pad type.

There are three modules that configure the various functions available:
e System Integration Unit Lite (SIUL)

e Wakeup Unit (WKPU)

e 32 KHz oscillator (SXOSC)

The SIUL configures the digital pin functions. Each pin has a register (PCR) in the module
that allows selection of the output functions that is connected to the pin. The available
settings for the PCR are described in Section 4.7: Functional ports. Inputs are selected using
the PSMI registers; these are described in Chapter 19: System Integration Unit Lite (SIUL).
(PSMl registers connect a module to one of several pins, whereas the PCR registers connect
a pin to one of several modules).

The WKPU provides the ability to cause interrupts and wake the MCU from low power modes
and operates independently from the SIUL.

In addition to digital 1/O functions the SXOSC is a "special function” that provides a slow
external crystal. The SXOSC is enabled independently from the digital I/O which means that
the digital function on the pin must be disabled when the SXOSC is active. The ADC functions
are enabled using the PCRs.

Software design

Certain modules provide system integration functions, and other modules (such as timers)
provide specific functions.

3

DoclD14629 Rev 9

RMO0017

Preface

1.7.4

3

From reset, the modules involved in configuring the system for application software are:
e Boot Assist Module (BAM) — determines the selected boot source

e Reset Generation Module (MC_RGM) — determines the behavior of the MCU when
various reset sources are triggered and reports the source of the reset

e Mode Entry Module (MC_ME) — controls which operating mode the MCU is in and
configures the peripherals and clocks and power supplies for each of the modes

e Power Control Unit (MC_PCU) — determines which power domains are active

e Clock Generation Module (MC_CGM) — chooses the clock source for the system and
many peripherals

After reset, the MCU will automatically select the appropriate reset source and begin to
execute code. At this point the system clock is the 16 MHz FIRC oscillator, the CPU is in
supervisor mode and all the memory is available. Initialization is required before most
peripherals may be used and before the SRAM can be read (since the SRAM is protected by
ECC, the syndrome will generally be uninitialized after reset and reads would fail the check).
Accessing disabled features causes error conditions or interrupts.

A typical startup routine would involve initializing the software environment including stacks,
heaps, variable initialization and so on and configuring the MCU for the application.

The MC_ME module enables the modules and other features like clocks. It is therefore an
essential part of the initialization and operation software. In general, the software will
configure an MC_ME mode to make certain peripherals, clocks, and memory active and then
switch to that mode.

Chapter 6: Clock Description, includes a graphic of the clock architecture of the MCU. This
can be used to determine how to configure the MC_CGM module. In general software will

configure the module to enable the required clocks and PLLs and route these to the active
modules.

After these steps are complete it is possible to configure the input/output pins and the
modules for the application.

Other features

The MC_ME module manages low power modes and so itis likely that it will be used to switch
into different configurations (module sets, clocks) depending on the application requirements.

The MCU includes two other features to improve the integrity of the application:

e ltis possible to enable a software watchdog (SWT) immediately at reset or afterwards
to help detect code runaway.

e Individual register settings can be protected from unintended writes using the features
of the Register Protection module. The protected registers are shown in Chapter 29:
Register Protection.

Other integration functionality is provided by the System Status and Configuration Module
(SSCM).

DoclD14629 Rev 9 45/888

Introduction RMO0017

2

2.1

2.2

221

Introduction

The SPC560Bx and SPC560Cx microcontroller family

The SPC560Bx and SPC560Cx represents a new generation of 32-bit microcontrollers
based on the Power Architecture®. It belongs to an expanding family of automotive-focused
products targeted at addressing the next wave of body electronics applications within the
vehicle.

This document describes the features of the family and options available within the family
members, and highlights important electrical and physical characteristics of the device.

The advanced and cost-efficient host processor core of the family complies with the

Power Architecture embedded category. It operates at speeds of up to 64 MHz and offers
high performance processing optimized for low power consumption. It capitalizes on the
available development infrastructure of current Power Architecture devices and is supported
with software drivers, operating systems and configuration code to assist with users
implementations. See Section 2.4: Developer support, for more information.

Features
This section describes the features of the SPC560Bx and SPC560Cx.

SPC560Bx and SPC560Cx family comparison
Table 3 and Table 4 report the memory scaling of Code Flash and SRAM.

Table 3. Code Flash memory scaling

Memory size

Start address

End address

256 KB

0x00000000

0x0003FFFF

384 KB

0x00000000

OxO0005FFFF

512 KB

0x00000000

0x0007FFFF

Table 4. SRAM memory scalin

Memory size

Start address

End address

24 KB

0x40000000

0x40005FFF

28 KB

0x40000000

0x40006FFF

32 KB

0x40000000

0x40007FFF

40 KB

0x40000000

0x40009FFF

48 KB

0x40000000

0x4000BFFF

Table 5 provides a summary of the different members of the SPC560Bx and SPC560Cx
family. This information is intended to provide an understanding of the range of functionality
offered by this family.

46/888

DoclD14629 Rev 9

S74

6 A3Y 62911Al°0d

888/LY

Table 5. SPC560Bx and SPC560Cx device comparison®

Device
Feature SPC560B | SPC560B | SPC560B | SPC560C | SPC560C | SPC560B | SPC560B | SPC560B | SPC560C | SPC560C | SPC560B
40L1 40L3 40L5 40L1 40L3 50L1 50L3 50L5 50L1 50L3 50B2
CPU €200z0h
Execution Static — up to 64 MHz
speed®
Code Flash 256 KB ‘ 512 KB
Data Flash 64 KB (4 x 16 KB)
RAM 24 KB 32 KB ‘ 32KB 48 KB
MPU 8-entry
ADC (10-bit) 12 ch 28 ch 36 ch 8 ch 28 ch 12 ch ‘ 28 ch 36 ch 8 ch 28 ch 36 ch
CTU Yes
Total timer 1/0®) | 12 ch, 28 ch, 56 ch, 12 ch, 28 ch, 12 ch, 28 ch, 56 ch, 12 ch, 28 ch, 56 ch,
eMIOS 16-bit 16-bit 16-bit 16-hit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit
— PWM + MC + 2ch 5ch 10 ch 2ch 5ch 2ch 5ch 10 ch 2ch 5ch 10 ch
Ic/oc®
— PWM + 10 ch 20 ch 40 ch 10 ch 20 ch 10 ch 20 ch 40 ch 10 ch 20 ch 40 ch
ic/oc®
— 1Ic/oc® — 3ch 6 ch — 3ch — 3ch 6 ch — 3ch 6 ch
SCI (LINFlex) 30)
SPI (DSPI) 2 2 3 2 2
CAN (FlexCAN) 20 5 6 3™ 5
1’c 1
32 kHz oscillator Yes
GPI0®) 45 79 123 45 79 45 79 123 45 79 123
Debug JTAG Nexus2+

/LTOONYH

uo1ONPOoIIU|

888/8Y

6 A3Y 62911Al°0d

Table 5. SPC560Bx and SPC560Cx device comparison(l)(Continued)

Device
Feature SPC560B | SPC560B | SPC560B | SPC560C | SPC560C | SPC560B | SPC560B | SPC560B | SPC560C | SPC560C | SPC560B
40L1 40L3 40L5 40L1 40L3 50L1 50L3 50L5 50L1 50L3 50B2
Package LQFP64®) | LQFP100 | LQFP144 | LQFP64® | LQFP100 | LQFP64®) | LQFP100 | LQFP144 | LQFP64® | LQFP100 (LBGA208(10)

© ® N oo, DN

Based on 125 °C ambient operating temperature.
See the eMIOS section of the device reference manual for information on the channel configuration and functions.
IC — Input Capture; OC — Output Compare; PWM — Pulse Width Modulation; MC — Modulus counter.
SCI0, SCI1 and SCI2 are available. SCI3 is not available.
CANO, CAN1 are available. CAN2, CAN3, CAN4 and CANS are not available.

CANO, CAN1 and CAN2 are available. CAN3, CAN4 and CANS5 are not available.
1/0 count based on multiplexing with peripherals.
All LQFP64 information is indicative and must be confirmed during silicon validation.

10. LBGA208 available only as development package for Nexus2+.

Feature set dependent on selected peripheral multiplexing—table shows example implementation.

uononNposU|

LTOONYH

RMO0017 Introduction
2.2.2 Block diagram
Figure 2 shows a top-level block diagram of the SPC560Bx and SPC560Cx family.
SRAM Code Flash || Data Flash
JTAG 48 KB 512 KB 64 KB
JTAG
G port _ T R ¢ ¢ ¢
al L
Nexus port Instructions
=
£200z0h] SRAM Flash
&4—?4—’ (Master) H controller controller
3 A A
Ly —» Noxus 27 Data 2 |2
—> ™
\oltage y X o (Slave)
regulator =
A 2 P
Interrupt requests oy < (Slave)
NMI from peripheral ——| ©
X blocks MPU
INTC || registers
Clocks cMU
X » FMPLL »
y A
y
RTC || STM || SwT ||ECSM || PIT MC_RGM|IMC_CGM|| MC_ME ||MC_PCU BAM || SscMm
A 2 2 A A A A A y
\ 4 A 4 A 4 A A4 A 4 A 4 A v v
Peripheral bridge
y A 4 A A A A y
A 4 y v v h 4 h 4 y “
SIuL 36 Ch. 2x 4x 3x 2 6x
| apc [€P CTU [*¥ .uios LINFlex DSPI Ic FlexCAN
nterrupt
reques’[p External 4 A A A A 4
y| interrupt
"1 request
IMUX WKPU
GPIO and
pad control
AAAAT+
Interrupt
i‘ request with
*V 4 4 4 4 v wakeup
o X X X functionality
Legend:
ADC Analog-to-Digital Converter MC_ME Mode Entry Module
BAM Boot Assist Module MC_PCU Power Control Unit
FlexCAN Controller Area Network MC_RGM Reset Generation Module
CMU Clock Monitor Unit MPU Memory Protection Unit
CTU Cross Triggering Unit Nexus Nexus Development Interface (NDI) Level
DSPI Deserial Serial Peripheral Interface NMI Non-Maskable Interrupt
eMIOS Enhanced Modular Input Output System PIT Periodic Interrupt Timer
FMPLL Frequency-Modulated Phase-Locked Loop RTC Real-Time Clock
12Cc Inter-integrated Circuit Bus SIUL System Integration Unit Lite
IMUX Internal Multiplexer SRAM Static Random-Access Memory
INTC Interrupt Controller SSCM System Status Configuration Module
JTAG JTAG controller ST™M System Timer Module
LINFlex Serial Communication Interface (LIN support) SWT Software Watchdog Timer
ECSM Error Correction Status Module WKPU Wakeup Unit
MC_CGM Clock Generation Module

S74

Figure 2. SPC560Bx and SPC560Cx block diagram

DoclD14629 Rev 9

49/888

Introduction

RMO0017

2.2.3 Chip-level features

On-chip modules available within the family include the following features:

50/888

Single issue, 32-bit CPU core complex (€200z0)
— Compliant with the Power Architecture™ embedded category

— Includes an instruction set enhancement allowing variable length encoding (VLE)
for code size footprint reduction. With the optional encoding of mixed 16-bit and
32-bit instructions, it is possible to achieve significant code size footprint reduction.

Up to 512 Kbytes on-chip Code Flash supported with the Flash controller

Up to 64 Kbytes on-chip Data Flash supported with the Flash controller

Up to 48 Khytes on-chip SRAM

Memory protection unit (MPU) with 8 region descriptors and 32-byte region granularity
Interrupt controller (INTC) capable of handling 148 selectable-priority interrupt sources
Frequency-modulated phase-locked loop (FMPLL)

Crossbar switch architecture for concurrent access to peripherals, Flash, or SRAM
from multiple bus masters

Boot assist module (BAM) supports internal Flash programming via a serial link
(FlexCAN or LINFlex)

Timer supports input/output channels providing a range of 16-bit input capture, output
compare, and pulse width modulation functions (eMIOS)

10-bit analog-to-digital converter (ADC)

Up to 3 serial peripheral interface (DSPI) modules

Up to 4 serial communication interface (LINFlex) modules

— LINFlex 1, 2 and 3: Master capable

— LINFlex 0: Master capable and slave capable

Up to 6 enhanced full CAN (FlexCAN) modules with 64 configurable message buffers
1 inter-integrated circuit (I2C) module

Up to 123 configurable general purpose pins supporting input and output operations
(package dependent)

Real time counter (RTC) with clock source from FIRC or SIRC supporting autonomous
wake-up with 1-ms resolution with max timeout of 2 seconds

— Support for RTC with clock source from SXOSC, supporting wake-up with 1-sec
resolution and max timeout of 1 hour

6 periodic interrupt timers (PIT) with 32-bit counter resolution
1 system module timer (STM)
Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class Two Plus

Device/board boundary scan testing supported with per Joint Test Action Group (JTAG)
of IEEE (IEEE 1149.1)

On-chip voltage regulator (VREG) for regulation of input supply for all internal levels

3

DoclD14629 Rev 9

RMO0017 Introduction
2.3 Packages

SPC560Bx and SPC560Cx family members are offered in the following package types:

. 64-pin LQFP, 10mm x 10mm outline

e 100-pin LQFP, 0.5mm pitch, 14mm x 14mm outline

e 144-pin LQFP, 0.5mm pitch, 20mm x 20mm outline

e LBGA208, 1mm ball pitch, 17mm x 17mm outline development package
2.4 Developer support

3

The following development support is available:

e Automotive evaluation boards (EVB) featuring CAN, LIN interfaces, and more
e Compilers

e Debuggers

e JTAG and Nexus interfaces

The following software support is available:

e OSEK solutions will be available from multiple third parties

e CAN and LIN drivers

e AUTOSAR package

DoclD14629 Rev 9

51/888

Memory Map

RMO0017

3 Memory Map

Table 6 shows the memory map for the SPC560Bx and SPC560Cx. All addresses on the
device, including those that are reserved, are identified in the table. The addresses represent
the physical addresses assigned to each IP block.

Table 6. SPC560Bx and SPC560Cx memory map

Start address | End address | Size (KB) Region name
0x0000_0000 | 0x0000_7FFF 32 Code Flash Sector 0
0x0000_8000 | 0x0000_BFFF 16 Code Flash Sector 1
0x0000_CO000 | 0x0000 FFFF 16 Code Flash Sector 2
0x0001_0000 | 0x0001 7FFF 32 Code Flash Sector 3
0x0001_8000 | 0x0001_FFFF 32 Code Flash Sector 4
0x0002_0000 | 0x0003_FFFF 128 Code Flash Sector 5

0x0004_0000 | 0x0005_FFFF 128 Code Flash Sector 6
0x0006_0000 | 0x0007_FFFF 128 Code Flash Sector 7
0x0008 0000 | Ox001F_FFFF 1536 Reserved

0x0020_0000 | 0x0020_3FFF 16 Code Flash Shadow Sector
0x0020_4000 | Ox003F_FFFF 2032 Reserved

0x0040_0000 | 0x0040_3FFF 16 Code Flash Test Sector
0x0040_4000 | Ox007F_FFFF 4080 Reserved

0x0080_0000 | 0x0080_3FFF 16 Data Flash Array O
0x0080_4000 | 0x0080_7FFF 16 Data Flash Array 1
0x0080_8000 | 0x0080_BFFF 16 Data Flash Array 2
0x0080_CO000 | 0x0080_FFFF 16 Data Flash Array 3
0x0081_0000 | OxO0BF_FFFF 4032 Reserved

0x00C0_0000 | 0x00CO_3FFF 16 Data test sector
0x00CO0_4000 | OXOODF_FFFF 4080 Reserved

0x0100_0000 | OX1FFF_FFFF | 507904 |Flash Emulation Mapping
0x2000_0000 | Ox3FFF_FFFF | 524288 |Reserved for External Bus Interface
0x4000_0000 | 0x4000_BFFF 48 SRAM

0x4000_C000 | OXC3F8_7FFF | 2162160 |Reserved

0xC3F8_8000 | 0xC3F8_BFFF 16 Code Flash A Configuration
0xC3F8_C000 | OXC3F8_FFFF 16 Data Flash A Configuration
0xC3F9_0000 | OxC3F9_3FFF 16 SIUL

O0xC3F9_4000 | OxC3F9_T7FFF 16 WKPU

0xC3F9_8000 | OXxC3F9_FFFF 32 Reserved

52/888

DoclD14629 Rev 9

3

RMO0017

Memory Map

3

Table 6. SPC560Bx and SPC560Cx memory map(Continued)

Start address | End address | Size (KB) Region name
OxC3FA_0000 | OXC3FA_3FFF 16 eMIOS_0
OxC3FA_4000 | OXC3FA_7FFF 16 eMIOS 1
O0xC3FA_8000 | OXC3FD_T7FFF 192 Reserved
0xC3FD_8000 | OXxC3FD_BFFF 16 SSCM
0xC3FD_CO000 | OXC3FD_FFFF 16 MC_ME
OxC3FE_0000 | OXC3FE_3FFF 16 MC_CGM
OxC3FE_4000 | OXC3FE_7FFF 16 MC_RGM
OxC3FE_8000 | OxC3FE_BFFF 16 MC_PCU
OxC3FE_CO000 | OXC3FE_FFFF 16 RTC/API
OxC3FF_0000 | OXC3FF_3FFF 16 PIT
OxC3FF4000 | OXFFDF_FFFF | 981040 |Reserved
OxFFEO_0000 | OXFFEO_3FFF 16 ADC_0
OXFFEO_4000 | OXFFE2_FFFF 176 Reserved
OxFFE3_0000 | OXFFE3_3FFF 16 12C_0
OxFFE3_4000 | OXFFE3_FFFF 48 Reserved
OxFFE4_0000 | OXFFE4_3FFF 16 LINFlex_0
OxFFE4_4000 | OXFFE4_7FFF 16 LINFlex_1
OXFFE4_8000 | OXFFE4_BFFF 16 LINFlex_2
OXFFE4_CO000 | OXFFE4_FFFF 16 LINFlex_3
OxFFE5_0000 | OXFFE6_3FFF 80 Reserved
OxFFE6_4000 | OXFFE6_T7FFF 16 CTU
OxFFE6_8000 | OXFFE6_FFFF 32 Reserved
OxFFE7_0000 | OXFFE7_3FFF 16 CAN sampler
OXFFE7_4000 | OXFFE7_FFFF 48 Reserved
OxFFE8_0000 | OXFFEF_FFFF 512 Mirrored range 0x3F80000—-0xC3FFFFFF
OxFFFO_0000 | OXFFFO_FFFF 64 Reserved
OxFFF1_0000 | OxFFF1_3FFF 16 MPU
OxFFF1_4000 | OxFFF3_7FFF 144 Reserved
OxFFF3_8000 | OxFFF3_BFFF 16 SWT
OxFFF3_C000 | OXFFF3_FFFF 16 ST™M
OxFFF4_0000 | OxFFF4_3FFF 16 ECSM
OxFFF4_4000 | OxFFF4_7FFF 16 Reserved
OxFFF4_8000 | OxFFF4_BFFF 16 INTC
OxFFF4_CO000 | OXFFF8_FFFF 272 Reserved
OxFFF9_0000 | OXFFF9_3FFF 16 DSPI_0

DoclD14629 Rev 9

53/888

Memory Map

RMO0017

Table 6. SPC560Bx and SPC560Cx memory map(Continued)

Start address | End address | Size (KB) Region name
OxFFF9_4000 | OXFFF9_7FFF 16 DSPI_1
OxFFF9_8000 | OXFFF9_BFFF 16 DSPI_2
OxFFF9_CO000 | OXFFFB_FFFF 144 Reserved
OxFFFC_0000 | OXFFFC_3FFF 16 FlexCAN_O
OxFFFC_4000 | OXFFFC_7FFF 16 FlexCAN_1
OXFFFC_8000 | OXFFFC_BFFF 16 FlexCAN_2
OxFFFC_CO000 | OXFFFC_FFFF 16 FlexCAN_3
OxFFFD_0000 | OXFFFD_3FFF 16 FlexCAN_4
OxFFFD_4000 | OXFFFD_7FFF 16 FlexCAN_5
OxFFFD_8000 | OXFFFF_BFFF 144 Reserved
OxFFFF_CO000 | OXFFFF_FFFF 16 BAM

54/888

DoclD14629 Rev 9

3

RMO0017

Signal description

4

4.1

4.2

3

Signal description

Introduction

The following sections provide signal descriptions and related information about the
functionality and configuration.

Package pinouts

The LQFP pinouts and the BGA ballmap are provided in the following figures.

For more information on pin multiplexing on this device, see Table 7 through Table 10.

>
— 3 B\IE S,
SETES swlg 2 TS TN
2OPOTRYSSYPTIRLL
ooooooooooooooon
/ TONAODOI~ O LMN O D
COOVOWOLLLLWLWOLWOLLWLWL S
PB[3]H 1 48 p PA[11]
pclo] 2 47 | PA[10]
PA[2]d 3 46 [PA[9]
PA[L]H 4 45 p PA[8]
PA[0]1 5 44 R PA[7]
vss_HVH 6 43 hPA[3]
VDD_HvV [7 ﬁ h EE ﬁ%
vss_HvH 8 P h
reserd s LQFP64 Top view 0 FPe(ia]
vss_Lv g 10 39 fi PB[12]
vDD_LvH 11 38 fi PB[11]
vDD BV H 12 37 hPB[7]
PC[10] 13 36 |1 PB[6]
PB[0]] 14 35 h PB[5]
PB[1]H 15 34 b VDD_HV_ADC
pcle] o] 16 33 | VSS_HV_ADC
SRARJINIIRERRIZ Y
T T T T oo oo
ERSERy32<2322RES
OSSgSS ™ |7 = — =m0 —m
EEEEEgykgkgtEe®
[a) S Qug
> > S

Figure 3. LQFP 64-pin configuration®

a. All LQFP64 information is indicative and must be confirmed during silicon validation.

DoclD14629 Rev 9

55/888

Signal description

RMO0017

56/888

>3z 2
N [T = .
SEAOEERTEEREEEN00) ILEERES,
DOO0UUWUO0OLWIONOLNOIgLOoOO0OW
adddaacaoaddaacada>>>>daaoaaaaa
Oooooo0ooo0o0o0oo0ooo0ooo0oooonn
/%%85g@&%%&‘%%%%@ﬁ%%%s%&ﬂkﬁ
pe[3 1 75 peapy
pco1d 2 7 prapo
rculd 3 73 hrag)
pcpisi o 4 7 heagg
Pa21d 5 7 peam
pEp1] 6 70 pvop_Hv
Al d 7 69 pvsshv
pE11 d 8 68 pra@
P8I o o 67 peB[s)
P[]] 10 66 [PD[15]
Pe10] g 1 65 peeia
paf0] 12 64 fPD[14]
pef11] d 13 63 peep3
vss_Hv o 14 LQ FP100 62 fiPo[3]
vop_Hv g 15 . 61 peei2)
vss_Hv] 16 TOp view 60 | PD[12]
RESET (] 17 59 fee
vss v 18 58 fepu
voo_Lv d 19 57 hPD[10]
vop BV d 20 56 | o)
pcpur) o 21 55 ke[
pcfo] g 22 54 hpB[s)
pe[o] o] 23 53 heeps)
e[y] 24 52 | vDD_HV_ADC
pcisl o 25 51 |vss HV_ADC
CERIYVBIIBIBYEBILIITILILELER?
EEEZEE232242 8880 nTRaEs
CEfTEsggkykJEEPRRRRRRRRR
5> >%g

Note:

Availability of port pin alternate functions depends on product selection.

Figure 4. LQFP 100-pin configuration (top view)

DoclD14629 Rev 9

3

RMO0017

Signal description

3

Note:

- %322 o S
EEANECEEEEEESEERNEE 00 A2EERES 28T AT
DOOOWNUIIIIINUNOONWIONO0N0ILCO0O00OTmOOm
adddaoaadaoaaaaadadaaaoaa>>>>daoaaada4aaaaaaaa
OOOOO0oO000NOONO000NON0000NONNoOnonnnon

/oo EnERI RN SR RN eI SN e R TR NS S
SESSSEERERSRURERRRNNIRANERRgS29dH38
P[] 1 108 1 PA[11]
pclo1 g 2 107 |1 PA[10]
pci4 g 3 106 1 PA[9]
pc[s] g 4 105 |1 PA[8]
pe[s1 g 5 104 1 PA[7]
pcl41 O 6 103 1 PE[13]
pG[31 7 102 1 PF[14]
Zenl: K 101 | PF15]
PARI 9 100 |7 VDD_HV
PE[0] [10 99 |1 vss_Hv
PAl] g 11 98 b1 PG[0]
PE[1] O 12 97 P[]
PE[8] [13 96 |1 PH[3]
PE[O]] 14 95 [PH[2)
PE[10] d 15 94 [PH[1]
PAL] O 16 93 1 PH[0]
PE[1] 17 92 pPG[12]
vss_Hv o 18 91 1 PG[13]
VDD_HV [19 LQFP144 90 1 PA[3]
Vss_HV [20 . 89 [PB[15]
RESET 21 TOp view 88 | PD[15]
vss_Lv o 22 87 [PB[14]
voD_Lv] 23 86 [0 PD[14]
voD BV o 24 85 1 PB[13]
PG[9] f 25 84 [PD[13]
PG[8] f 26 83 [PB[12]
pclu] d 27 82 [PD[12]
PC[10] f 28 81 [PB[11]
PG[71 g 29 80 1 PD[11]
pGl6] g 30 79 |1 PD[10]
PB[0] 31 78 b1 PD[9]
B[] g 32 77 el
PF[O]] 33 76 | PBI6]
PF(8]] 34 75 b1 PB[5]
PF[12]] 35 74 |1 VDD_HV_ADC
pcle] o] 36 73 |a vss_HV_ADC
O NN T NEN PP O NN TN O RO INNI RO B9 0N
5BFITILILETIIBERIIBEEBRB3IIBIBEEBBIRIN
T T T T T O T T T T T O O O T T T O O O T T T O O O O O T T
EggRgTERN32472372 208808 SnorNobatoEnoEas
Egggggﬁggg‘g‘;m‘gglﬁﬁgﬁkﬁﬁkﬁﬁkﬁggﬁgEEEEE
> s>*g

Availability of port pin alternate functions depends on product selection.

Figure 5. LQFP 144-pin configuration (top view)

DoclD14629 Rev 9

57/888

Signal description RMO0017
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A | PCI8] [PC[13]| NC NC | PH[8] | PH[4] | PC[5] | PC[0] | NC NC | PC[2] | NC |PE[15]| NC NC NC |,
g | PCIO] | PB[2] | NC |PC[12]| PE[6] | PH[5] | PC[4] | PH[9] | PH[10] | NC | PC[3] | PG[11] | PG[15] | PG[14] | PA[11] | PA[10] | 4
c |PCl141| vDD_ | PB[3] | PE[7] | PH[7] | PE[S] | PE[3] |VSS_L| PC[1] | NC | PA[5] | NC |PE[14]|PE[12]| PA[9] | PA[8] |
HV \
5| NC NC |PC[15]| NC | PH[6] | PE[4] | PE[2] |VDD_L| VDD_| NC | PA[6] | NC |PG[10]| PF[14] | PE[13]| PA[7] |
\ HV
¢ | PG | PGIS] | PG[3] | PG[2] PG[1] | PG[O] | PF[15] | VDD_ | _
HV
£ | PEO] | PA[2] | PA[L] | PE[1] PH[O] | PH[1] | PH[3] | PH[2] | .
| PEISI | PEI8] | PE[10] | PA[0] VSS_H|VSS_H|VSS_H|VSS H VDD_ | NC NC |MSEO| .
\% \% \% \% HV
u |VSS_H| PE[LL]| VDD_ | NC VSS_H|VSS_H|VSS_H|VSS H MDO3 | MDO2 | MDOO | MDOL |
\ HV \ \ \ \
, | RESE |VSS_L| NC NC VSS_H|VSS_H|VSS_H|VSS_H NC NC NC NC |
T \ \ \ \ \
« | EVTI | NC | VvDD_ |VDD_L VSS_H|VSS_H|VSS_H|VSS_H NC |PG[12]| PA[3] |PG[13]| .
BV \ \ \ \ \
. | PGI9] | PG[8] | NC | EVTO PB[15] | PD[15] | PD[14] | PB[14] |
w | PGI7] | PGI6] | PC[10] | PC[11] PB[13] | PD[13] | PD[12] | PB[12] | ,,
n | PBILl | PF9] | PB[O] | NC NC | PA4] |VSS_L|EXTAL| VDD_ | PF[0] | PF[4] | NC |PB[11]|PD[10]| PD[9] | PD[1l]|
\% HV
PF[8] | NC | PC[7] | NC NC | PA[14] |VDD_L| XTAL | PB[10] | PF[1] | PF[5] | PD[0] | PD[3] | VDD_ | PB[6] | PB[7]
P \% HV_A P
DC
PF[12] | PC[6] | PF[10] | PF[11] | VDD_ | PA[15] | PA[13] | NC |0OSC32| PF[3] | PF[7] | PD[2] | PD[4] | PD[7] |VSS_H| PBI[5]
R HV K_XTA V_AD R
L C
NC NC NC |MCKO| NC |PF[13]|PA[12]| NC |0OSC32| PF[2] | PF[6] | PD[1] | PD[5] | PD[6] | PD[8] | PB[4]
T K_EXT T
AL

1

2

3

4

5

6

7

8

Note: LBGA208 available only as development package for Nexus 2+.

4.3

58/888

Pad configuration during reset phases

Figure 6. LBGA208 configuration

10

All pads have a fixed configuration under reset.

During the power-up phase, all pads are forced to tristate.

DoclD14629 Rev 9

11

12

13

14

15

16

= Not connected

3

RM0017 Signal description
After power-up phase, all pads are forced to tristate with the following exceptions:
e PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from
flash.
e PA[8] (ABS[Q]) is pull-up.
e RESET pad is driven low. This is pull-up only after PHASE?2 reset completion.
e JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.
e Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).
e Main oscillator pads (EXTAL, XTAL) are tristate.
e Nexus output pads (MDOI[n], MCKO, EVTO, MSEO) are forced to output.
4.4 Voltage supply pins
Voltage supply pins are used to provide power to the device. Three dedicated
VDD_LV/VSS_LV supply pairs are used for 1.2 V regulator stabilization.
Table 7. Voltage supply pin descriptions
Pin number
Port pin Function
LQFP64 LQFP100 | LQFP144 |LBGA208W
VDD_HV 7,28,56 |[15,37,70,84| 19, 51, 100, |C2, D9, E16,
Digital supply voltage 123 G13, H3, N9,
R5
VSS_HV 6, 8, 26,55 | 14,16, 35, | 18, 20,49, | G7,G8, G9,
69, 83 99, 122 G10, H1, H7,
. H8, H9, H10,
Digital ground 37,38, 39,
J10, K7, K8,
K9, K10
VDD_LV 1.2V decoupling pins. Decoupling 11, 23, 57 19, 32,85 | 23,46, 124 | D8, K4, P7
capacitor must be connected between
these pins and the nearest Vgg v pin.@
VSS LV 1.2V decoupling pins. Decoupling 10, 24, 58 18, 33, 86 22,47,125 | C8, J2, N7
capacitor must be connected between
these pins and the nearest Vpp |y pin.?
VDD_BV Internal regulator supply voltage 12 20 24 K3
VSS_HV_ADC |Reference ground and analog ground for 33 51 73 R15
the ADC
VDD_HV_ADC |Reference voltage and analog supply for 34 52 74 P14
the ADC

1.

LBGA208 available only as development package for Nexus2+

2. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage
(see the recommended operating conditions in the device datasheet for details).

3

DoclD14629 Rev 9

59/888

Signal description

RMO0017

4.5

4.6

Pad types

In the device the following types of pads are available for system pins and functional port

pins:
S = Slow®
M = Medium® ©)
F = Fast® ©
| = Input only with analog feature(®

J = Input/Output (‘S’ pad) with analog feature

X = Oscillator

System pins

The system pins are listed in Table 8.

Table 8. System pin descriptions

System pin

Function

1/0 direction

Pad type

RESET configuration

Pin number

LQFP64

LQFP100
LQFP144
LBGA208M

RESET

Bidirectional reset with Schmitt-Trigger characteristics
and noise filter.

o

<

Input, weak
pull-up only
after PHASE2

©

[EEN
~
N
[
[
[

EXTAL

Analog output of the oscillator amplifier circuit, when the
oscillator is not in bypass mode.

Analog input for the clock generator when the oscillator
is in bypass mode.@

I/0

Tristate

27

36 | 50 | N8

XTAL

Analog input of the oscillator amplifier circuit. Needs to
be grounded if oscillator is used in bypass mode.®

Tristate

25

34 | 48 | P8

1. LBGAZ208 available only as development package for Nexus2+

2. See the relevant section of the datasheet

4.7

60/888

Functional ports

The functional port pins are listed in Table 9.

b. See the I/O pad electrical characteristics in the device datasheet for details.

c. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium
(see PCR.SRC in section Pad Configuration Registers (PCR0-PCR122) in the device reference manual).

DoclD14629 Rev 9

S74

RM0017 Signal description
Table 9. Functional port pin descriptions
8 c Pin number
c UIS) c ® s |9 2 —~
s o S5 S 9o Z |5 e < o < <
£ O =S o =3 o | = 03 © g S o
S o e = ‘= =B w = o N N I
a Z5S z O S |a = & T o éﬁ
- g 3 - 9 9]
-
AF0 | GPIO[0] SIUL /O | M | Tristate 5 12 16 G4
AF1 |EOUCIO] eMIOS_0 | I/0
PA[0] |PCR[0] [AF2 |cCLKOUT CGL o
AF3 1 — WKPU I
— WKPU[19]*)
AFO | GPIO[1] SIUL /IO | S | Tristate 4 7 11 F3
AF2 — - -
PA[1] |PCR[1] AF3 _ — _
®) WKPU I
— |NMI WKPU | 1
— WKPU[2]®)
AFO GPIO[2] SIUL 0| s Tristate 3 5 9 F2
AF1 EOUC|2] eMIOS_0 | I/O
PA[2] |PCR[2] |AF2 |— - -
AFS 1 — 4 WKPU I
— WKPU[3]®
AF0 |GPIO[3] SIUL /O | S | Tristate 43 68 90 | K15
AF1 EOUC[3] eMIOS_0 | I/O0
PA[3] |PCR[3] |AF2 |— - -
AR 1— SIUL I
— EIRQ[0]
AFO GPIO[4] SIUL 0| s Tristate 20 29 43 N6
AF1 EOUC[4] eMIOS_0 | I/O
PA[4] |PCR[4] |AF2 |— - -
AFS 1 — WKPU I
— WKPU[9]“
AF0 |GPIO[5] SIUL /O | M | Tristate 51 79 18 | c11
AF1 EOUC[5] eMIOS_0 | I/O0
PA[5] |PCR[5] _ _
AF2 | —
AF3 |— o o
AF0 | GPIO[6] SIUL /0| S | Tristate 52 80 119 | D11
AF1 EOUCI6] eMIOS_0 | I/O
PA[6] |PCR[6] |AF2 |— - -
AF3 |\ — SIUL I
— EIRQ[1]
Kys DoclD14629 Rev 9 61/888

Signal description

RMO0017

Table 9. Functional port pin descriptions(Continued)

D c Pin number
c oZ c © S| @ 2 —
= o S5 2 2 =S 8 <«) < <
v O =S 3] =y o | = n 3 © S S =}
5 a s = = =7 = a o o S
a =) ° c L LL
e - et 8|29 9]¢
- -
AFO |GPIO[7] SIUL [0 | S | Tristate 44 | 71 | 104 | D16
AF1 |EOUC[7] eMIOS_0 | I/O
PA[7] |PCR[7] |AF2 |LIN3TX LINFlex 3 | O
AFS 1 — SIUL [
— EIRQ[2]
AFO | GPIO[8] SIUL |1Wo| S Input, 45 72 | 105 | C16
AF1 EOUCI8] eMIOS_0 | I/O weak
AF2 | — — — pull-up
PA[8] |PCR[8] |AF3 |[— SIuL |
— EIRQ[3] BAM |
N/A®) | ABS[O] LINFlex_3 | |
— LIN3RX
AFO |GPIO[9] SWWL [0 | S | Pull-down | 46 73 | 106 | C15
AF1 EOUC[9] eMIOS_0 | I/O
PA[9] |PCR[9] |AF2 |[— - -
AR3 1— BAM [
N/A®) | FAB
AFO |GPIO[10] SIUL |[l/O| S | Tristate 47 74 | 107 | B16
PA[10] |PCR[10] AFL - EOUCTL0] MOS0 | VO
AF2 | SDA 2C_0 |0
AF3 |— o o
AFO |GPIO[11] SIUL |[l/O| S | Tristate 48 75 | 108 | B15
PA[11] |PCR[11] AFL - EOUCIL] e
AF3 |— o o
AFO |GPIO[12] SIUL |I/O| S | Tristate 22 31 | 45 | T7
AF1 |— — —
PA[12] |PCR[12] |AF2 |— - -
AFS 1 — DSPI0 | |
— SIN_0
AFO |GPIO[13] SIUL [l/O| M | Tristate 21 30 | 44 | R7
AF1 |SOUT.0 DSPILO | O
PA[13] |PCR[13] _ _
AF2 |—
AF3 |— o o
AFO |GPIO[14] SIUL |[l/O| M | Tristate 19 28 | 42 | P6
AF1 SCK_0 DSPI_O | I/O
PA[14] |PCR[14] |AF2 |CS0 0 DSPILO | IO
AR31— SIUL [
— EIRQ[4]
62/888 DoclD14629 Rev 9 Kyy

RM0017 Signal description
Table 9. Functional port pin descriptions(Continued)
D c Pin number
s | x |E&§ 2 g 1z]l5| wE | ¢+ g |3 |%
= (@] E = g o () S u o © — - I
S Qo = 2 =] 5 % é_ts o= & & & ‘2
<< S L c
= Se S | 2193198
-
AFO | GPIO[15] SIUL | 1/O| M | Tristate 18 27 | 40 | R6
AF1 |CS0 0 DSPI_O0 | I/O
PA[15] |PCR[15] |AF2 |SCK_ 0 DSPILO | 1/O
AFS 1— WKPU [
— WKPU[10]“)
AFO | GPIO[16] SIUL /0| M Tristate 14 23 31 N3
AF1 | CANOTX FlexCAN_ | O
PB[0] |PCR[16] 0 —
AF2 |— . B
AF3 |— _
AFO | GPIO[17] SIUL |1/O| S | Tristate 15 24 | 32 | M1
AF1 |— — —
AF2 |— - -
PB[1] |PCR7] | . — —
— @ WKPU [
— WKPU[4] FlexCAN_ | 1
— CANORX 0
AFO |GPIO[18] SIUL [0 | M | Tristate 64 | 100 | 144 | B2
AF1 |LINOTX LINFlex 0 | O
PB[2] |PCR[18
[2] [18] AF2 | SDA 2C0 |10
AF3 |— o o
AFO | GPIO[19] SIUL |10 | S | Tristate 1 1 1 c3
AF1 |— — —
A2 |scL 12C_0 |0
PBI3] |PCR[19] | o — —
- @ WKPU [
— WKPU[11] LINFlex 0 | |
— LINORX
AF0 | GPIO[20] SIUL [Tristate 32 50 72 | T16
AF1 |— — —
PB[4] |PCR[20] |[AF2 |— - -
AFS 1 — ADC [
— GPI[0]
AF0 | GPIO[21] SIUL [Tristate 35 53 75 | R16
AF1 |— — —
PB[5] |PCR[21] |AF2 |— - -
AFS 1— ADC [
— GPI[1]
Kyy DoclD14629 Rev 9 63/888

Signal description RM0017
Table 9. Functional port pin descriptions(Continued)
D c Pin number
c oZ c © S| @ 2 —
S < < e [} = | & s)
21 5 |Eg 5 s |82 435 |8 |83 |8
5 a s = = =7 = a o o S
e <> g P S| a c) L m
9 s |3]91]19] a
-
AFO GPI0[22] SIUL | | Tristate 36 54 76 P15
AF1 |— — —
PB[6] |PCR[22] |AF2 |— - -
AF3 - ADC |
— GPI[2]
AFO GPIO[23] SIUL | Tristate 37 55 77 P16
AF1 — - -
PB[7] |PCR[23] |AF2 |— - -
AF3 _ ADC |
— GPI[3]
AFO GPI10[24] SIUL | Tristate 30 39 53 R9
AF1 — - -
AF2 — - -
PB[8] |PCRI24] |, . _ _
_ ADC |
— ANSI[O] SXosc | /o
— 0SC32K_XTAL™
AFO GPIOJ[25] SEL l Tristate 29 38 52 T9
AF1 | _ —
PB[9 PCR[25 AF2 _ - o
[9] [23] AF3 | ADC [
_ |ANS[] SX0sc | 110
0OSC32K_EXTAL!
_ 7
AFO GPI0[26] SIUL /o | J Tristate 31 40 54 P9
AF1 — - -
AF2 — - -
PB[10] |PCRI26] | . — —
_ ADC |
— ANS[2] WKPU | |
— WKPU[8]“
AFO GPI0J[27] SIUL 1o | J Tristate 38 59 81 N13
- AF1 |EOUC|3] eMIOS_0 | I/O
(8)[] PCR[27] |AF2 — DS;I 0 I/_O
AF3 CS0_ 0 ADE |
— ANS[3]
AFO GPI0[28] SIUL /o | J Tristate 39 61 83 M16
AF1 EOUC[4] eMIOS_0 | I/O
PB[12] |PCR[28] |AF2 |— DS;I 0 g
AF3 |CS1.0 ADC |
— ANX][0]
64/888 DoclD14629 Rev 9 Kys

RM0017 Signal description
Table 9. Functional port pin descriptions(Continued)
D c Pin number
c oZ c © S| @ 2 —
S| =« |E% 2 2 15|85 B8 |5 13| 3|%
o O S= 2 = ° | Z a3 © = N S
g = g 5 |5 |8 =€ | L& |&|%
= a o
9 s |3]91]19] a
-
AFO GPIO[29] SIUL /1o | J Tristate 40 63 85 M13
AF1 |EOUC|5] eMIOS_0 | I/O
PB[13] |PCR[29] |AF2 |— DS;I 0 g
AF3 |CS2.0 ADC |
— ANX[1]
AFO GPIO[30] SIUL o | J Tristate 41 65 87 L16
AF1 EOUCI6] eMIOS_0 | I/O
PB[14] |PCR[30] |AF2 |— DS;I 0 g
AF3 CS3 0 AD6 |
— ANX[2]
AFO GPIO[31] SIUL /1o | J Tristate 42 67 89 L13
AF1 |EOUC[7] eMIOS_0 | I/O
PB[15] |PCR[31] |AF2 |— DS;I 0 g
AF3 |CS4.0 ADC |
— ANX[3]
AFO GPIO[32] SIUL /10| M Input, 59 87 126 A8
PC[0] AF1 | — — — weak
©) PCRI[32] AF2 | TDI JTAGC [pull-up
AF3 |— o o
AFO GPIOJ[33] SIUL /10| M Tristate 54 82 121 (01°]
PC[1]® AFl | — — —
) PCRIS3] |\ oo |1poto) JTAGC | O
AF3 |— o o
AFO GPIO[34] SIUL 10| M Tristate 50 78 117 All
AF1 |SCK 1 DSPI_1 | 1/O
PC[2] |PCR[34] |AF2 |CAN4TX(1) F'eXiAN— 3
AF3 — _ |
— EIRQ[5] SIUL
SIUL /10| S Tristate 49 77 116 B11
AFO GPIO[35] DSPI_1 /0
AF1 CS0_1 ADC o
AF2 | MA[O] _ _
PC[3] |PCR[35] |AF3 |— FlexCAN_ | |
— CAN1RX 1 l
_ CAN4RX(1D FlexCAN_ | |
4
— EIRQI[6] SIUL
Kys DoclD14629 Rev 9 65/888

Signal description RM0017
Table 9. Functional port pin descriptions(Continued)
D c Pin number
c IIS) c ® s | o 2 —
= o S5 2 2 =S 8 <«) < <
v O =S 3] =y o | = n 3 © S S =}
5 a s = = =7 = a o o S
e <> g P S | ‘s) L m
Q 8 | 22|98
-
AFO | GPIO[36] SIUL | 1/O| M | Tristate 62 92 | 131 | B7
AF1 |— — —
AF2 |— - -
PC4] |PCRI36] |, o — —
— DSPI_1 | |
— SIN_1 FlexCAN_ | |
— CAN3RX(1) 3
AFO GPIO[37] SIUL | 1/O| M | Tristate 61 91 | 130 | A7
SOUT_1 DSPIL | O
AFL AN3TXID | FlexCAN
PC[5] |PCR[37] |AF2 c 3_ exg - 3
AF3 EIRQ[7] — [
— SIUL
AF0 | GPIO[38] SIUL |10 | S | Tristate 16 25 36 | R2
AF1 [LINITX LINFlex_1 | O
PC[6] |PCR[38] _ _
AF2 |—
AF3 |— o o
AFO | GPIO[39] SIUL |I/O| S | Tristate 17 26 37 | P3
AF1 |— — —
AF2 |— - -
PC[7] |PCRI39] |, . _ —
- LINFlex_1 | |
— LINIRX WKPU |
— WKPU[12]*)
AF0 | GPIO[40] SIUL |10 | S | Tristate 63 99 | 143 | A1
AF1 [LIN2TX LINFlex_2 | O
PC[8] |PCR[40] _ _
AF2 |—
AF3 |— o o
AFO | GPIO[41] SIUL |I/O| S | Tristate 2 2 2 B1
AF1 |— — —
AF2 |— - -
PC9] |PCRMA1] | . — —
- LINFlex_2 | |
— LIN2RX WKPU |
— WKPU[13]¥)
SIUL /10| M Tristate 13 22 28 M3
AFO | GPIO[42] FlexCAN_ | O
PC[10] |PCRjaz) | AT | CANLTX ! 0
[10] 421 1 aro | canaTx@ FlexCAN_ | O
AF3 |MA[1] 4
ADC
66/888 DoclD14629 Rev 9 Kyy

RM0017 Signal description

Table 9. Functional port pin descriptions(Continued)

D c Pin number
c oZ c © S| @ 2 —
5 SIS < @ = | 2| LS D
S| 5 |Se 5 S |82 @3 |28 |3 |3
5 o | g8 S = S| 8| 2 | & | & | & |8
o < S T & T | a = o [[
Q S | 21998
-
AFO GPIO[43] SEL I/_O S Tristate — 21 27 M4
AF1 |— B B
AF2 |— _ _
PC[11] |PCR[43] |AF3 |— FlexCAN_ | |
— CAN1RX 1 I
_ CAN4RX(D FlexCAN_ | |
4
_ (@)
WKPU[5] WKPU
AFO | GPIO[44] SIUL |1/O| M | Tristate — 97 | 141 | B4
AF1 |EOUC[12] eMIOS_0 | I/O
PC[12] |PCR[44] |AF2 |— - -
AF3 1 — DSPI 2 | |
— SIN_2
AFO | GPIO[45] SIUL |1/O| S | Tristate — 98 | 142 | A2
PC[13] |PCR[45] AFL | EOUCTLS] eMIOSD | 1o
AF2 |SOUT 2 DSPL2 | O
AF3 |— o o
AFO | GPIO[46] SIUL |1/O| S | Tristate — 3 3 c1
AF1 |EOUC[14] eMIOS_0 | I/0
PC[14] |PCR[46] |AF2 |SCK 2 DSPI 2 | I/O
AF3 1 — SIUL [
— EIRQ[8]
AFO | GPIO[47] SIUL |I/O| M | Tristate — 4 4 D3
PC[15] |PCR[47] AFL | EOUCTLS] el
AF2 | Cs0. 2 DSPI_2 | I/0
AF3 |— o o
AFO | GPIO[48] SIUL [Tristate — 41 63 | P12
AF1 |— — —
PD[0] |PCR[48] |AF2 |— - —
AF3 | — ADC |
— GPI[4]
AFO | GPIO[49] SIUL [Tristate — 42 64 | T12
AF1 |— — —
PD[1] |PCR[49] |AF2 |— - -
AF3 | — ADC [
— GPI[5]
‘Yl DoclD14629 Rev 9 67/888

Signal description RM0017
Table 9. Functional port pin descriptions(Continued)
D c Pin number
c) c ® s |9 = oy
5 T S 9) = 2| IS D
s | s |E5 5 s 8|2 45 |38 |3 |38
s a T3] c = 2| o u @ a = = I
& = Z 5 |5 |&| £ | L& |&|<
2 a o
Q 8 | 2129 |R
-
AFO GPIO[50] SIUL | I Tristate — 43 65 R12
AF1 — - -
PD[2] |PCR[50] |AF2 |— - -
AF3 - ADC |
— GPI[6]
AFO GPIO[51] SIUL | Tristate — 44 66 P13
AF1 — - -
PD[3] |PCR[51] |AF2 |— - -
AF3 _ ADC |
— GPI[7]
AFO GPIO[52] SIUL | Tristate — 45 67 R13
AF1 — - -
PD[4] |PCR[52] |AF2 |— - -
AF3 - ADC |
— GPI[8]
AFO GPIO[53] SIUL | Tristate — 46 68 T13
AF1 — - -
PD[5] |PCR[53] |AF2 |— - -
AF3 _ ADC |
— GPI[9]
AFO GPIO[54] SIUL | Tristate — 47 69 T14
AF1 — - -
PD[6] |PCR[54] |AF2 |— - -
AF3 — ADC |
— GPI[10]
AFO GPIO[55] SIUL | Tristate — 48 70 R14
AF1 — - -
PD[7] |PCR[55] |AF2 |— - -
AF3 _ ADC |
— GPI[11]
AFO GPIO[56] SIUL | Tristate — 49 71 T15
AF1 — - -
PD[8] |PCR[56] |AF2 |— - -
AF3 - ADC |
— GPI[12]
68/888 DoclD14629 Rev 9 Kys

RMO0017

Signal description

Table 9. Functional port pin descriptions(Continued)

D c Pin number
c IIS) c ® s | o 2 —
= o 85 2 g | 2| L8 < o | |8
v O =S 3] =y o | = n 3 © S S =}
5 a s = = =7 = a o o S
e <> s P S | =) L o
Q 8 | 22|98
-
AFO | GPIO[57] SIUL I | 1| Trstate | — | 56 | 78 | N15
AF1 |— — —
PD[9] |PCR[57] |AF2 |— - -
AFS 1— ADC |
— |ePIng
AFO | GPIO[58] SIuL | Tristate | — | 57 | 79 | N14
AF1 |— — —
PD[10] |PCR[58] |AF2 |— - -
AFS 1 — ADC |
— |GPI[14]
AFO | GPIO[59] SIuL | Tristate | — | 58 | 80 | N16
AF1 |— — —
PD[11] |PCR[59] |AF2 |— - —
AFS 1— ADC |
— |GPI[15]
AFO | GPIO[60] SIUL |1O| J | Tristate | — | 60 | 82 | M15
— AF1 |CS5 .0 DSPIO | O
PPI2l perieo) [AF2 |EOUCI24] eMIOS_0 | 1/0
AFS 1— ADC |
— |ANS[4]
AFO |GPIO[61] SWL |[Vo| 3| Tristate | — | 62 | 84 | M14
AF1 [CSO0_1 DSPI_1 | I/O
PD[13] |PCR[61] |AF2 |EOUC[25] eMIOS_0 | I/0
AFS 1— ADC |
— |ANS[5]
AFO | GPIO[62] SIUL |WO| J | Tristate | — | 64 | 86 | L15
AF1 |CS1.1 DSPIL1 | O
PD[14] |PCR[62] |AF2 |EOUC[26] eMIOS_0 | I/0
AFS 1— ADC |
— |ANS[6]
AFO |GPIO[63] SWUL |WOo| J | Tristate | — | 66 | 88 | Ll4
AF1 |CS2. 1 DSPIL1 | O
PD[15] |PCR[63] |AF2 |EOUC[27] eMIOS_0 | I/0
AFS 1— ADC |
— |ANS[7]
‘Yl DoclD14629 Rev 9 69/888

Signal description RM0017
Table 9. Functional port pin descriptions(Continued)
D c Pin number
c IIS) c ® s | o S —
5 T S 9) = 2| IS D
2 5 |c8 5 5 512 @45 | 3|83 |8
S a |2 £ = Slg| ug e 2 | 2|8
e <> T g S| c 3 o o <
Q s | 212198
-
AFO |GPIO[64] SWWUL [l/O| S | Tristate | — 6 10 | F1
AF1 |EOUC[16] eMIOS_0 | /0
AF2 |— - -
PE[0] |PCRI64] |, o — —
_ FlexCAN_ | |
— CAN5RX () 5 |
— WKPU[6]@ WKPU
AFO GPIO[65] SIUL /10| M Tristate — 8 12 F4
PE[1] |PCRiBS] |+ EOUCTLT] §|Z>I<8§NO I/g
AF2 | CAN5STX(D e
AF3 |— _
AFO | GPIO[66] SIUL [l/O| M | Tristate — | 89 | 128 | D7
AF1 |EOUC[18] eMIOS_0 | 1/0
PE[2] |PCR[66] |AF2 |— - -
AFS 1 — DSPI_1 | |
— SIN_1
AFO |GPIO[67] SIUL [l/O| M | Tristate — | 90 | 129 | c7
AF1 | EOUC[19] eMIOS_0 | I/O
PE[3] |PCR[67
[3] [67] AF2 |souT 1 DSPIL1 | O
AF3 |— o o
AFO |GPIO[68] SIUL |[l/O| M | Tristate — | 93 | 132 | D6
AF1 |EOUC[20] eMIOS_0 | I/0
PE[4] |PCR[68] |AF2 |SCK_ 1 DSPI_1 | 1/O
AFS 1 — SIUL [
— EIRQ[9]
AFO | GPIO[69] SIUL |[l/O| M | Tristate — | 94 | 133 | c6
AF1 |EOUC[21] eMIOS_0 | I/0
PE[5] |PCR[69] AF2 eSO 1 DSPI 1 |I/O
AF3 |MA[2] ADC ©
AFO | GPIO[70] SIUL |[l/O| M | Tristate — | 95 | 139 | B5
PE[] | PCRI70] AF1 |EOUC[22] eMIOS_0 | I/0
AF2 [CS3.0 Digko 8
AF3 |MA[1]
AFO |GPIO[71] SIUL |[l/O| M | Tristate — | 9 | 140 | c4
PE[] | PCRI7L] AF1 |EOUC[23] eMIOS_0 | I/0
AF2 |CS2.0 Di;'c—o 8
AF3 | MA[0]
70/888 DoclD14629 Rev 9 Kyy

RM0017 Signal description

Table 9. Functional port pin descriptions(Continued)

D c Pin number
c oZ c © S| @ 2 —
5 SIS < @ = | 2| LS D
s | s |E5 5 s 8|2 45 |38 |3 |38
5 a | 8% £ = SIB| ¥2 | 2| & | & |¢g
a =) ° c L LL
<= : = et s |2 9]¢
- —
SIUL |10 | M | Tristate | — 9 13 | G2
AFO GPIO[72](12) FlexCAN_ | O
AF1 |CAN2TX 2 /0
PE[8] |PCR[72
[8] (721] Ap2 EOUC[22] eMIOS_ 0 | O
AF3 | CAN3TX(1D FlexCAN_
3
AFO GPIO[73] SEL I/_O S Tristate — 10 14 Gl
AFl | — eMIOS_0 | 1/0
AF2 |EOUC[23] _ _
PE[9] |PCR[73] |AF3 |— WKPU | |
— WKPU[7]® FlexCAN_ | |
— | cAN2RX®2 2 '
. CAN3RX(11) FleXCAN_
3
AFO | GPIO[74] SIUL |I/O| S | Tristate | — | 11 | 15 | G3
AF1 [LIN3TX LINFlex_3
PE[10] |PCR[74] |AF2 |CS3 1 DSPIL1 | O
AFS | — SIuL [
— EIRQ[10]
AFO | GPIO[75] SIuL |1Wo| s | Tstate | — | 13 | 17 | H2
AF1 |— — —
AF2 |Cs4 1 DSPIL1 | O
PE[11] |PCR[7S] | — —
- LINFlex_3 | |
— LIN3RX WKPU | 1
— WKPU[14]®)
AFO |GPIO[76] SIUL |1WO| S | Tristate | — | 76 | 109 | C14
AF1 |— — —
PE[12] | PCRI76] | — —
- DSPI2 | |
— SIN_2 SIUL [
— EIRQ[11]
AFO |GPIO[77] SiuL |wWo| s | Trstate | — | — | 103 | D15
AF1 |SOUT2 DSPI.2 | O
PE[13] |PCR[77
[13] [77] AF2 | E1UC[20] eMIOS_1 | I/O
AF3 |— o o
AFO |GPIO[78] SiuL |1Wo| s | Trstate | — | — | 112 | c13
AF1 |SCK 2 DSPI_2 | I/O
PE[14] |PCR[78] |AF2 |E1UC[21] eMIOS_1 | I/0
AFS | — SIuL [
— EIRQ[12]
oC ev
‘Yl DoclD14629 Rev 9 71/888

Signal description

RMO0017

Table 9. Functional port pin descriptions(Continued)

g c Pin number
c oZ c © S| @ 2 —
o c S Lo [} = 2 ol o
£ ® 3 3 < S| 2| @5 31813 |%
S o |2 S = =|lg| 42 2|8 |8
o < o o c o o
=" ©olelt] 8|9 e8|t
B -
AFO | GPIO[79] SIUL |lVO| M | Tristate | — | — | 113 | A13
AF1 |CSO 2 DSPI_2 | I/O
PE[15] | PCR[79 —
[15] [79] AF2 |E1UC)22] eMIOS_1 | I/O
AF3 | — - -
AFO | GPIO[80] SIUL |VO| J | Trstate | — | — | 55 | N10
AF1 | EOUC[10] eMIOS_0 | 1/0
PF[0] |PCR[80] |[AF2 |CS3_1 DSPI_1 | ©
AFS 1= ADC [
— ANS[8]
AFO | GPIO[81] SIUL |lVO| J | Trstate | — | — | 56 | P10
AF1 | EOUC[11] eMIOS_0 | 1/0
PF[1] |PCR[81] |AF2 |[CS4 1 DSPIL1 | O
AF3 |— N "
— ANSI[9]
AFO | GPIO[82] SIUL |VO| J | Tristate | — | — | 57 | T10
AF1 | EOUC[12] eMIOS_0 | 1/0
PF2] |PCR[82] |AF2 |CS0 2 DSPI_2 | 1/O
AR = ADC [
— ANS[10]
AFO | GPIO[83] SIUL |VO| J | Tristate | — | — | 58 | R10
AF1 | EOUC[13] eMIOS_0 | 1/0
PF[3] |PCR[83] |AF2 |CS1_2 DspI_2 | ©
AFS 1= ADC [
— ANS[11]
AFO | GPIO[84] SIUL |VO| J | Tristate | — | — | 59 | N11
AF1 | EOUC[14] eMIOS_0 | 1/0
PF[4] |PCR[84] |AF2 |CS2_2 DSPIL2 | ©
AR = ADC [
— ANS[12]
AFO | GPIO[85] SIUL |0 | J | Tristate | — | — | 60 | P11
AF1 | EOUC[22] eMIOS_0 | 1/0
PF[5] |PCR[85] |AF2 |CS3 2 DspI_2 | ©
ARS 1= ADC [
— ANS[13]
AFO | GPIO[86] SIUL |VO| J | Tristate | — | — | 61 | Ti1
AF1 | EOUC[23] eMIOS_0 | 1/0
PF[6] |PCR[86] |[AF2 |— — —
AR = ADC [
— ANS[14]
72/888 DoclD14629 Rev 9 Kys

RM0017 Signal description
Table 9. Functional port pin descriptions(Continued)
D c Pin number
c 88 c ® 5) |_,g —
& | o« |T5 2 2 5|2 WS s l8|3|%
= O o5 o o (] n > © — - o
S a |2 5 = S|B| BE el e e | g
e <> T a € o o
- e 3 1219198
-
AF0 | GPIO[87] SIUL /O | J | Tristate — — 62 | R11
AF1 |— — —
PF[7] |PCR[87] |AF2 |— - -
AFS 1— ADC |
— ANSJ[15]
SIUL /O | M | Tristate — — 34 P1
AFO GPIO[88](14) FlexCAN_ | O
AF1 |CAN3TX 3 o}
PF[8] |PCR[88
18] B8] | Ar2 CS4_0 DSPILO | O
2
UL [Tri — — N2
AFO GPIO[8Y] S_U /_O S ristate 33
AFl | — DSPIO | O
PF[9] |PCR[89 AF21CS5.0 N T
4] [89] AF3 |— FlexCAN_ | |
— | CAN2RX(19) 2 '
. CAN3RX(14) FlexCAN_
3
AF0 | GPIO[90] SIUL /O | M | Tristate — — 38 R3
PF10] |PCRi90] | | _ _
AF2 |— - -
AF3 |— o o
AF0 |GPIO[91] SIUL /O | S | Tristate — — 39 R4
AF1 |— — —
PF[11] |PCR[91] |AF2 |— - -
AFS 1 — ” WKPU [
— WKPU[15]*)
AF0 | GPIO[92] SIUL /O | M | Tristate — — 35 R1
AF1 |E1UC[25] eMIOS_1 | 1/O
PF[12] | PCR[92] _ -
AF2 |—
AF3 |— o o
AF0 | GPIO[93] SIUL /O | S | Tristate — — 41 T6
AF1 |E1UC[26] eMIOS_1 | 1/O
PF[13] |PCR[93] |AF2 |— - -
AR31— 4 WKPU [
— WKPU[16]*)
Kyy DoclD14629 Rev 9 73/888

Signal description

RMO0017

Table 9. Functional port pin descriptions(Continued)

D c Pin number
c IIS) c © s | o 2 —
S < < e [} = | & s)
21 5 |Eg 5 s |82 435 |8 |83 |8
o e e 5 S S| 3 = a o o S
o Z: S T g o = o LL LL
Q 8 | 22|98
-
SWUL |[/O| M | Tristate | — | — | 102 | D14
AFO GPIO[94](11) FlexCAN_ | O
AF1 |CANATX 4 /0
PF[14] |PCR[94
[14] 411 Aro E1UC[27] eMIOS_1 | O
AF3 |CAN1TX F'GXEAN_
AFO | GPIO[S] SWL |[VOo| S | Tristate | — | — | 101 | E15
AF1 |— : :
AF2 |— _ _
PF[15] |PCR[95] |AF3 |— FlexCAN_ | |
— CAN1RX 1 I
_ CAN4RX(1D FlexCAN_ | |
4
— EIRQ[13] SIUL
AFO GPIO[96] SIUL /10| M Tristate — — 98 E14
AFL | CAN5STX(D FlexCAN_ | O
PG[O] |PCRI96] |\ o | Z1cma 5 110
(23] eMIOS_1 | —
AF3 |— _
AFO |GPIO[97] SWUL |1/O| S | Tristate | — | — | 97 | E13
AF1 |— — —
AF2 |E1UC[24] eMIOS_1 | 1/O
PG[1] |PCRI97] |, o — —
- FlexCAN_ | |
— CANSRX(D) 5 |
— EIRQ[14] SIUL
AFO | GPIO[98] SWL [0 | M | Tristate | — | — 8 E4
AF1 |E1UC[11 eMIOS_1 | I/O
PG[2] |PCR[98] [11] _ _
AF2 |—
AF3 |— o o
AFO | GPIO[99] SWL |[l/O| S | Tristate | — | — 7 E3
AF1 |E1UC[12] eMIOS_1 | I/O
PG[3] |PCR[99] |AF2 |— - -
AF3 | — WKPU [
— WKPU[17]4)
AFO | GPIO[100] SWUL [VO| M | Tristate | — | — 6 E1
AF1 |E1UC[13 eMIOS_1 | 1/O
PG[4] PCR[100 [13] - "
] AF2 |—
AF3 |— o o
74/888 DoclD14629 Rev 9 ‘Yl

RM0017 Signal description
Table 9. Functional port pin descriptions(Continued)
D c Pin number
c oZ c © S| @ 2 —
S| « |85 2 2 3|5 BE 518 l3|%
fus O T o o [0} 9] © — - o
o o L2e 5 = =8 '&JE’ e a a 2
o < s o P T | a c o T T
Q s | 212198
-
AF0 | GPIO[101] SIUL /0| S | Tristate — — 5 E2
PCRI101 AF1 |E1UC[14] eMIOS_1 | I/O
PG[5]] [AF2 | — - -
AFS 1 — WKPU I
— WKPU[18]“)
AF0 |GPIO[102] SIUL /O | M | Tristate — — 30 M2
PCR[102 | AF1 E1UC[15] eMIOS_1 | I/O
PGIe]] AF2 | — - -
AF3 |— o o
AF0 | GPIO[103] SIUL /O | M | Tristate — — 29 M1
PCR[103 |[AF1 |E1UC[16] eMIOS_1 | I/O
Pl s AF2 | — - -
AF3 |— o o
AF0 | GPIO[104] SIUL /O | S | Tristate — — 26 L2
BCRI104 AF1 |E1UC[17] eMIOS_1 | I/O
Pelg) || ARz | DSPL2 |10
AF3 [CS0 2 SIUL |
— EIRQ[15]
AF0 | GPIO[105] SIUL /IO | S | Tristate — — 25 L1
PCR[105 | AF1 E1UC[18] eMIOS_1 | I/O
PGI]] AF2 |— — —
AF3 | ScK 2 DSPI_2 |1/O
AF0 | GPIO[106] SIUL /IO | S | Tristate — — 114 | D13
PCR[106 |AF1 | EOUC[24] eMIOS_0 | I/O
PGI10]] AF2 |— - -
AF3 |— o o
AF0 | GPIO[107] SIUL /O | M | Tristate — — 115 | B12
PCR[107 | AF1 EOUC|25] eMIOS_0 | I/O
PG[11]] [A2 | _ _
AF3 |— o o
AF0 | GPIO[108] SIUL /O | M | Tristate — — 92 | K14
PCR[108 |AF1 | EOUC[26] eMIOS_0 | I/O
Peli2]] AF2 |— - -
AF3 |— o o
AF0 | GPIO[109] SIUL /O | M | Tristate — — 91 | K16
PCR[109 [AF1 |EOUC[27] eMIOS_0 | I/O
PGS] AF2 |— - -
AF3 |— o o
Kys DoclD14629 Rev 9 75/888

Signal description

RMO0017

Table 9. Functional port pin descriptions(Continued)

D c Pin number
c I’ c ® s |9 = P
5 T S 9) = 2| IS D
= 5 |:Ss 5 S |8|2| 93 |38 |3 |3
5 a g = 2 Slg| w2 o T Ao g
o < s o P T | a ‘€) o o
Q S | 2|9 2|8
|
AFO |GPIO[110] SIUL IO | S | Tristate — — | 110 | B14
PCR[110 [AF1 |E1UCI0] eMIOS_1 | I/o
PG[14] : N _ _
AF3 |— o o
AF0 |GPIO[111] SIUL IO | M | Tristate — — | 111 | B13
AF1 E1UC[1 eMIOS_1 | I/O
PG[15] | PCR[111] N [1] _ _
AF3 |— o o
AFO0 |[GPIO[112] SIUL /O | M | Tristate — — 93 | F13
PCRI1L2 AF1 |E1UC[2] eMIOS_1 | I/O
PH[O0] : [AF2 |— — —
AF3 ;Nl DSPI_1 I
AFO |[GPIO[113] SIUL IO | M | Tristate — — 94 | F14
PH[1] PCR[113 [AF1 |E1UC[3] eMIOS_1 | I/O
] AF2 |SOUT1 DSPIL1 | O
AF3 |— o o
AF0 |GPIO[114] SIUL /O | M | Tristate — — 95 | F16
PH[2] PCR[114 [AF1 |E1UC[4] eMIOS_1 | I/O
] AF2 |SCK_1 DSPI_1 | 1/O
AF3 | — - -
AFO | GPIO[115] SIUL IO | M | Tristate — — 96 | F15
PH[3] PCR[115 |AF1 |E1UC[5] eMIOS_1 | 1/O
] AF2 |CS0_1 DSPI_1 | 1/O
AF3 | — - -
AFO |GPIO[116] SIUL IO | M | Tristate — — | 134 | A6
PCR[116 |AF1 E1UC[6] eMIOS 1 | I/O
PH[4] : Ary | _ _
AF3 |— o o
AF0 |GPIO[117] SIUL WO | S | Tristate — — | 135 | B6
PCR[117 |AF1 E1UC[7] eMIOS_1 | I/O
PHES]] AF2 |— - -
AF3 | — - -
AFO | GPIO[118] SIUL /O | M | Tristate — — | 136 | D5
PCR[118 |AF1 |E1UCIS8] eMIOS_1 | I/o
PH[6] : Arr | _ _
AF3 |MA[2] ADC o
76/888 DocID14629 Rev 9 ‘Yl

RM0017 Signal description
Table 9. Functional port pin descriptions(Continued)
D c Pin number
c I’ c ® s |9 S —
5 T S 9) = 2| IS D
2 5 |c8 5 5 512 @45 | 3|83 |8
S a |2 £ = Slg| ug e 2 | 2|8
o = [} © = L L L <
<2 3 > le|"| &8 |39 9]¢
- -
AFO GPIO[119] SIUL /10| M Tristate — — 137 C5
PH[T] PCR[119 |AF1 |E1UC[9] eMIOS_1 | I/O
] AF2 |CS3. 2 Dig'c—z 8
AF3 |MA[1]
AFO GPIO[120] SIUL /10| M Tristate — — 138 A5
PH{E] PCR[120 | AF1 E1UC[10] eMIOS 1 | I/O
] AF2 [CS2. 2 Dig'éz 8
AF3 | MA[O0]
PH[9]¢© AFO GPIO[121] SIUL | s Input, 60 88 | 127 | BS
) |PCR[121 | AF1 — — — weak
] AF2 TCK JTAGC | | pull-up
AF3 — — —
PH[10]¢ AFO GPIO[122] SIUL |1o| s Input, 53 81 | 120 | B9
9 |PCR[122 | AF1 — — — weak
] AF2 T™S JTAGC [pull-up
AF3 — — —

1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 — AFO;
PCR.PA =01 — AF1; PCR.PA = 10 —» AF2; PCR.PA = 11 — AF3. This is intended to select the output functions; to use
one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields.
For this reason, the value corresponding to an input only function is reported as “—".

2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the

values of the PSMIO.PADSELX bitfields inside the SIUL module.
LBGA208 available only as development package for Nexus2+

I e o

reference manual for details.

~

Value of PCR.IBE bit must be 0

All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details.
NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.

“Not applicable” because these functions are available only while the device is booting. Refer to BAM chapter of the

Be aware that this pad is used on the SPC560B64L3 and SPC560B64L5 to provide VDD_HV_ADC and VSS_HV_ADC1.
Therefore, you should be careful in ensuring compatibility between SPC560Bx and SPC560Cx and SPC560B64.

9. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PCJ[0:1] are available as JTAG pins (TDI and TDO respectively).

PH[9:10] are available as JTAG pins (TCK and TMS respectively).
If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1-2001.

10. The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in STANDBY
mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad is configured as an
input. When no debugger is connected the TDO pad is floating causing additional current consumption. To avoid the extra
consumption TDO must be connected. An external pull-up resistor in the range of 47—100 kQ should be added between the
TDO pin and VDD_HV. Only in case the TDO pin is used as application pin and a pull-up cannot be used then a pull-down
resistor with the same value should be used between TDO pin and GND instead.

11. Available only on SPC560Cx versions and SPC560B50B2 devices
12. Not available on SPC560B40L3 and SPC560B40L5 devices
13. Not available in 100 LQFP package

14. Available only on SPC560B50B2 devices
15. Not available on SPC560B44L3 devices

S74

DoclD14629 Rev 9

77/888

Signal description RM0017
4.8 Nexus 2+ pins
In the LBGA208 package, eight additional debug pins are available (see Table 10).
Table 10. Nexus 2+ pin descriptions
_ Pin number
Debug pin Function direction | Pad ype | i Con LQFP | LQFP |LBGA208
100 144 @
MCKO Message clock out (0] F — — — T4
MDOO0 Message data out 0 (0] M — — — H15
MDO1 Message data out 1 (0] M — — — H16
MDO2 Message data out 2 (0] M — — — H14
MDO3 Message data out 3 (0] M — — — H13
EVTI Eventin I M Pull-up — — K1
EVTO Event out (@) M — — — L4
MSEO Message start/end out (0] M — — — G16

1. LBGAZ208 available only as development package for Nexus2+.

78/888

DoclD14629 Rev 9

3

RMO0017 Microcontroller Boot
5 Microcontroller Boot
This chapter explains the process of booting the microcontroller. The following entities are
involved in the boot process:
e Boot Assist Module (BAM)
e System Status and Configuration Module (SSCM)
e Flash memory boot sectors (see Chapter 27: Flash Memory)
e Memory Management Unit (MMU)
5.1 Boot mechanism

3

This section describes the configuration required by the user, and the steps performed by the
microcontroller, in order to achieve a successful boot from flash memory or serial download
modes.

There are two external pins on the microcontroller that are latched during reset and used to
determine whether the microcontroller will boot from flash memory or attempt a serial
download via FlexCAN or LINFlexD (RS232):

e FAB (Force Alternate Boot mode) on pin PA[9]
e ABS (Alternate Boot Select) on pin PA[8]

Table 11 describes the configuration options.

Table 11. Boot mode selection

Mode FAB pin (PA[9]) ABS pin (PA[8])
Flash memory boot (default mode) 0 X
Serial boot (LINFlexD) 1 0
Serial boot (FIlexCAN) 1 1

The microcontroller has a weak pull-down on PA[9] and a weak pull-up on PA[8]. This means
that if nothing external is connected to these pins, the microcontroller will enter flash memory
boot mode by default. In order to change the boot behavior, you should use external pullup
or pulldown resistors on PA[9] and PA[8]. If there is any external circuitry connected to either
pin, you must ensure that this does not interfere with the expected value applied to the pin at
reset. Otherwise, the microcontroller may boot into an unexpected mode after reset.

The SSCM preforms a lot of the automated boot activity including reading the latched value
of the FAB (PA[9]) pin to determine whether to boot from flash memory or serial boot mode.
This is illustrated in Figure 7.

DoclD14629 Rev 9 79/888

Microcontroller Boot RMO0017

SSCM reads latched
values of PA[8] and
PAI9] pins

FAB=0 FAB=1

FAB (PA[9]) value?

ABS=1
ABS (PA[8]) value?

Serial boot Serial boot
(LINFlexD) (FlexCAN)

Figure 7. Boot mode selection

Boot from
flash memory

51.1 Flash memory boot

In order to successfully boot from flash memory, you must program two 32-bit fields into one
of five possible boot blocks as detailed below. The entities to program are:

e 16-bit Reset Configuration Half Word (RCHW), which contains:

— A BOOT_ID field that must be correctly set to Ox5A in order to "validate" the boot
sector
e 32-bit reset vector (this is the start address of the user code and for the CSE
BOOT_MAC calculation)

The location and structure of the boot sectors in flash memory are shown in Figure 8.

3

80/888 DoclD14629 Rev 9

RMO0017

Microcontroller Boot

0x0000_0000

0x0000_8000

0x0000_C000

0x0001_0000

0x0001_8000

Boot sector 0

32 KB

Boot sector 1

16 KB

Boot sector 2

16 KB

Boot sector 3

32 KB

Boot sector 4

32 KB

Code flash memory

0x0
(RCHW)

0x4

0x8

Bit0

Boot sector structure

15 16

Bit 31

Reserved

BOOT_ID
(OX5A)

Reserved

32-bit reset vector (points to start address of application code)
start address of BOOT_MAC calculation

Application code (from offset 0x8 and onward)

The RCHW fields are described in Table 12.

Table 12. RCHW field descriptions

Figure 8. Boot sector structure

Field

Description

BOOT_ID Boot identifier.

If BOOT_ID = Ox5A, the boot sector is considered valid and bootable.

5111

3

The SSCM performs a sequential search of each boot sector (starting at sector 0) for a valid
BOOT _ID within the RCHW. If a valid BOOT _ID is found, the SSCM reads the boot vector

address. If a valid BOOT_ID is not found, the SSCM starts the process of putting the

microcontroller into static mode.

Finally, the SSCM sets the e200z0h core instruction pointer to the reset vector address and

starts the core running.

Static mode

If no valid BOOT _ID within the RCHW was found, the SSCM sets the CPU core instruction
pointer to the BAM address and the core starts to execute the code to enter static mode as

follows:

. The core executes the "wait" instruction which halts the core.

DoclD14629 Rev 9

81/888

Microcontroller Boot RMO0017

51.1.2

5.1.2

82/888

The sequence is illustrated in Figure 9.

SSCM searches flash
boot sectors for valid
BOOT_ID (0X5A)

Valid
BOOT_ID found?

Yes No

Y Y

SSCM transfers
execution to e200z0h core
which runs BAM code

SSCM reads reset
vector address

Y Y

€200z0h core starts BAM code executes
executing code at wait instruction
vector address

Y

System in static mode
(requires reset to recover)

Figure 9. Flash memory boot mode sequence

Alternate boot sectors

Some applications require an alternate boot sector so that the main boot code can be erased
and reprogrammed in the field. When an alternate boot is needed, you can create two
bootable sectors:

. The valid boot sector located at the lowest address is the main boot sector.
. The valid boot sector located at the next available address is the alternate boot sector.

This scheme ensures that there is always one active boot sector even if the main boot sector
is erased.

Serial boot mode

Serial boot provides a mechanism to download and then execute code into the
microcontroller SRAM. Code may be downloaded using either FlexCAN or LINFlexD
(RS232). After the SSCM has detected that serial boot mode has been requested, execution
is transferred to the BAM which handles all of the serial boot mode tasks. See Section 5.2:
Boot Assist Module (BAM), for more details.

3

DoclD14629 Rev 9

RMO0017

Microcontroller Boot

5.1.3

Caution:

51.3.1

51.3.2

3

Censorship

Censorship can be enabled to protect the contents of the flash memory from being read or

modified. In order to achieve this, the censorship mechanism controls access to the:

e JTAG / Nexus debug interface

e Serial boot mode (which could otherwise be used to download and execute code to
qguery or modify the flash memory)

To re-gain access to the flash memory via JTAG or serial boot, a 64-bit password must be
correctly entered.

When censorship has been enabled, the only way to regain access is with the password. If
this is forgotten or not correctly configured, then there is no way back into the device.

There are two 64-bit values stored in the shadow flash which control the censorship (see
Table 320 for a full description):

e Nonvolatile Private Censorship Password registers, NVPWDO0 and NVPWD1

¢ Nonvolatile System Censorship Control registers, NVSCCO and NVSCC1

Censorship password registers (NVPWDO0 and NVPWD1)

The two private password registers combine to form a 64-bit password that should be
programmed to a value known only by you. After factory test these registers are programmed
as shown below:

e NVPWDO = OxFEED_FACE

e NVPWD1 = OxCAFE_BEEF

This means that even if censorship was inadvertently enabled by writing to the censorship

control registers, there is an opportunity to get back into the microcontroller using the default
private password of OXFEED_FACE_CAFE_BEEF.

When configuring the private password, each half word (16-bit) must contain at least one "1"
and one "0". Some examples of legal and illegal passwords are shown in Table 13:

Table 13. Examples of legal and illegal passwords

Legal (valid) passwords lllegal (invalid) passwords

0x0001_0001 0001 0001 0x0000_ XXXX_XXXX_ XXXX
0xFFFE_FFFE_FFFE_FFFE 0XFFFF_XXXX_XXXX_XXXX
0X1XXX_X2XX_XX4X_XXX8

In uncensored devices it is possible to download code via LINFlexD or FlexCAN (Serial Boot
Mode) into internal SRAM even if the 64-bit private password stored in the flash and provided
during the boot sequence is a password that does not conform to the password rules.

Nonvolatile System Censorship Control registers (NVSCCO and NVSCC1)

These registers are used together to define the censorship configuration. After factory test
these registers are programmed as shown below which disables censorship:
e NVSCCO = 0x55AA 55AA

e NVSCC1 = 0x55AA_55AA

DoclD14629 Rev 9 83/888

Microcontroller Boot

RMO0017

Caution:

5.1.3.3

Caution:

Each 32-bit register is split into an upper and lower 16-bit field. The upper 16 bits (the SC
field) are used to control serial boot mode censorship. The lower 16 bits (the CW field) are
used to control flash memory boot censorship.

If the contents of the shadow flash memory are erased and the NVSCCO,1 registers are not
re-programmed to a valid value, the microcontroller will be permanently censored with no
way for you to regain access. A microcontroller in this state cannot be debugged or re-
flashed.

Censorship configuration

The steps to configuring censorship are:
1. Define a valid 64-bit password that conforms to the password rules.

2. Using the table and flow charts below, decide what level of censorship you require and
configure the NVSCCO0,1 values.

3. Re-program the shadow flash memory and NVPWDO0,1 and NVSCCO,1 registers with
your new values. A POR is required before these will take effect.

If
(NVSCCO0 and NVSCC1 do not match)
or
(Either NVSCCO or NVSCCL1 is not set to Ox55AA)
then the microcontroller will be permanently censored with no way to get back in.

Table 14 shows all the possible modes of censorship. The red shaded areas are to be
avoided as these show the configuration for a device that is permanently locked out. If you
wish to enable censorship with a private password there is only one valid configuration — to
modify the CW field in both NVSCCO,1 registers so they match but do not equal 0xX55AA. This
will allow you to enter the private password in both serial and flash boot modes.

Table 14. Censorship configuration and truth table

Boot configuration Serial Censorshi Internal
censorship control Wofd flash Nexus Serial JTAG
FAB pin Control options control word (NVSCCn[CW]) memory state password | password
state (NVSCCn[sC]) state
OXXXXX AND O0x55AA AND Enabled | Enabled N/A
Uncensored NVSCCO == NVSCCO ==
NVSCC1 NVSCC1
Private flash Ox55AA AND 10x55AA AND Enabled | Enabled NVPWD1,0
0 (flash | memory NVSCCO == NVSCCO == with (SScM
memory | password and NVSCC1 NVSCC1 password reads flash
boot) | censored memory(®)
Censored with I0X55AA I0X55AA Enabled | Disabled N/A
no password OR
access (lockout) NVSCCO I= NVSCC1

84/888

DoclD14629 Rev 9

3

RMO0017

Microcontroller Boot

Table 14. Censorship configuration and truth table(Continued)

Boot configuration Serial Censorshi Internal
censorship P flash Nexus Serial JTAG
FAB pin Control obtions control word (ﬁ?/gt(i‘c():lnvgg\r/s]) memory state password | password
state P (NVSCCn[SC]) state
Private flash Ox55AA AND Enabled | Enabled | NVPWDO,1
memory NVSCCO0 == NVSCC1 (BAM reads
password and flash
uncensored memory(1)
Private flash O0x55AA AND I10xX55AA AND | Enabled | Disabled | NVPWD1,0
memory NVSCCO == NVSCCO == (Ssc™m
password and NVSCC1 NVSCC1 reads flash
1 (serial | censored memory(®)
boot) I0X55AA AND | OX55AA AND | Enabled | Enabled | Public
Public password NVSCCO = NVSCCO != (OXFEED_F
and uncensored NVSCC1 NVSCC1 ACE_CAFE
_BEEF)
. 10x55AA Disabled | Disabled Public
Public password (OXFEED_F
1= -
zggk((:)ir:)sored OR NVSCCO != NVSCC1 ACE_CAFE
_BEEF)

= Microcontroller permanently locked out

= Not applicable

1. When the SSCM reads the passwords from flash memory, the NVPWDO and NVPWD1 password order is swapped, so you
have to submit the 64-bit password as {NVPWD1, NVPWDO}.

3

The flow charts in Figure 10 and Figure 11 provide a way to quickly check what will happen
with different configurations of the NVSCCO,1 registers as well as detailing the correct way
to enter the serial password. In the password examples, assume the 64-bit password has

been programmed into the shadow flash memory in the order {NVPWDO, NWPWD1} and has
a value of 0x01234567_89ABCDEF.

DoclD14629 Rev 9

85/888

Microcontroller Boot RMO0017

FAB =0
(Flash boot mode)

Censored with no
password access
(Locked out)

Both
SCand CW I=

Censored with no
password access

0X5§AA (Locked out)
JTAG password details:
Censored with Enter password as
Note: CW != 0x55AA private password {NVPgNDl, NVPWDO}
SC = Ox55AA 2 over JTAG example —
N\ J
0x89ABCDEF_01234567
> Uncensored
N\ J

86/888

Figure 10. Censorship control in flash memory boot mode

3

DoclD14629 Rev 9

RMO0017 Microcontroller Boot
FAB =1
(Serial boot mode)
Censored with no
password access
(Locked out)
Both Censored with no
SCand CW 1= password access
Ox55AA (Locked out)
Serial password details:
. _ Public password, Enter public password
Note: 1=
CW = 0x55AA s¢ Q?XSSAA Uncensored OXFEEDFACE_CAFEBEEF
Flash h Enter password as
Note: CW 1= OX55AA (private) password, g)l:la\rfr’)\ll\éDl, NVPWDO0}
SC = Ox55AA ? N
' L Censored) | Ox89ABCDEF 01234567
(" Flash h Enter password as
o . {NVPWDO, NVPWD1}
> (private) password, example —
Uncensored) | 0x01234567_89ABCDEF
Figure 11. Censorship control in serial boot mode
5.2 Boot Assist Module (BAM)
The BAM consists of a block of ROM at address OxFFFF_C000 containing VLE firmware. The
BAM provides two main functions:
e Manages the serial download (FlexCAN or LINFlexD protocols supported) including
support for a serial password if censorship is enabled
e Places the microcontroller into static mode if flash memory boot mode is selected and a
valid BOOT_ID is not located in one of the boot sectors by the SSCM
5.2.1 BAM software flow

3

Figure 12 illustrates the BAM logic flow.

DoclD14629 Rev 9 87/888

Microcontroller Boot RMO0017

88/888

BAM Entry
OxFFFF_CO000

Save default

configuration

Check boot
mode at
SSCM_STATUS[BMODE]

Boot mode valid?

Restore default STATIC mode
configuration

Download new Restore default
codeandsavein | faurati > ExeCUts new
SRAM configuration code

Figure 12. BAM logic flow

The initial (reset) device configuration is saved including the mode and clock configuration.
This means that the serial download software running in the BAM can make changes to the
modes and clocking and then restore these to the default values before running the newly
downloaded application code from the SRAM.

The SSCM_STATUS[BMODE] field indicates which boot mode is to be executed (see
Table 15). This field is only updated during reset.

There are two conditions where the boot mode is not considered valid and the BAM pushes
the microcontroller into static mode after restoring the default configuration:

e BMODE =011 (flash memory boot mode). This means that the SSCM has been unable
to find a valid BOOT_ID in the boot sectors so has called the BAM

. BMODE = reserved
In static mode a wait instruction is executed to halt the core.

For the FlexCAN and LINFlexD serial boot modes, the respective area of BAM code is
executed to download the code to SRAM.

3

DoclD14629 Rev 9

RM0017 Microcontroller Boot
Table 15. SSCM_STATUS[BMODE] values as used by BAM
BMODE value Corresponding boot mode
000 Reserved
001 FlexCAN_0 serial boot loader
010 LINFlexD_0 (RS232 /UART) serial boot loader
011 Flash memory boot mode
100-111 Reserved
After the code has been downloaded to SRAM, the BAM code restores the initial device
configuration and then transfers execution to the start address of the downloaded code.
5211 BAM resources
The BAM uses/initializes the following MCU resources:
o MC_ME and MC_CGM to initialize mode and clock sources
e FlexCAN_O, LINFlexD_0 and the respective I/O pins when performing serial boot mode
e SSCM and shadow flash memory (NVPWDO0,1 and NVSCCO,1) during password check
e SSCM to check the boot mode (see Table 15)
e 4-16 MHz fast external crystal oscillator
The system clock is selected directly from the 4—-16 MHz fast external crystal oscillator. Thus,
the external oscillator frequency defines the baud rates used for serial download (see
Table 16).
Table 16. Serial boot mode — baud rates
FXOSC frequency LINFlexD baud rate CAN bit rate
(MHz) (baud) (bit/s)
frxosc fExosc/833 fExosc/40
8 9600 200K
12 14400 300K
16 19200 400K
5.2.1.2 Download and execute the new code

From a high level perspective, the download protocol follows these steps:

3

1. Send the 64-bit password.
2. Send the start address, size of code to be downloaded (in bytes) and the VLE bit(@.
3. Download the code.

Each step must be completed before the next step starts. After the download is complete (the
specified number of bytes is downloaded), the code executes from the start address.

d. Since the device supports only VLE code and not Book E code, this flag is used only for backward
compatibility.

DoclD14629 Rev 9 89/888

Microcontroller Boot RMO0017

5.2.1.3

The communication is done in half duplex manner, whereby the transmission from the host
is followed by the microcontroller transmission mirroring the transmission back to the host:

e Host sends data to the microcontroller and waits for a response.
o MCU echoes to host the data received.
e Host verifies if echo is correct:

— If data is correct, the host can continue to send data.

— If data is not correct, the host stops transmission and the microcontroller enters
static mode.

All multi-byte data structures are sent with MSB first.
A more detailed description of these steps follows.

Censorship mode detection and serial password validation

Before the serial download can commence, the BAM code must determine which censorship
mode the microcontroller is in and which password to use. It does this by reading the PUB
and SEC fields in the SSCM Status Register (see Section 5.3.4.1: System Status Register
(SSCM_STATUS)) as shown in Table 17.

Table 17. BAM censorship mode detection

SSCM_STATUS register fields
Mode Password comparison
PUB SEC
1 0 Uncensored, public password |OxFEED_FACE_CAFE_BEEF
0 0 Uncensored, private password |NVPWDO,1 from flash memory via BAM
0 1 Censored, private password NVPWD1,0 from flash memory via SSCM

90/888

When censorship is enabled, the flash memory cannot be read by application code running
in the BAM or in the SRAM. This means that the private password in the shadow flash
memory cannot be read by the BAM code. In this case the SSCM is used to obtain the private
password from the flash memory of the censored device. When the SSCM reads the private
password it inverts the order of {NVPWDO, NWPWD1} so the password entered over the
serial download needs to be {NVPWD1, NVPWDO0}.

3

DoclD14629 Rev 9

RMO0017 Microcontroller Boot

BAM tasks Applicable password

BAM code is being
executed
(serial boot mode)

Y

p
SSCM_STATUS register
PUB and SEC
bits are read

-

Public password
mode

Public password,
Uncensored,
BAM can directly
check password

Yes

pe
C
o ™
N
-
S S

] No
Is censorship

enabled

Private password,
SEC=1 Yes Censored,

SSCM needed to
check password

Y
Y

No

Private password,
Uncensored,
BAM can directly
check password

Y

Y

Start serial download W
with password J

>
<

Figure 13. BAM censorship mode detection

The first thing to be downloaded is the 64-bit password. If the password does not match the
stored password, then the BAM code pushes the microcontroller into static mode.

The way the password is compared with either the public or private password (depending on
mode) varies depending on whether censorship is enabled as described in the following
subsections.

5.2.1.3.1 Censorship disabled (private or public passwords):
1. If the public password is used, the BAM code does a direct comparison between the
serial password and OXFEED _FACE_CAFE_BEEF.

2. If the private password is used, the BAM code does a direct comparison between the
serial password and the private password in flash memory, {NVPWDO, NVPWD1}.

3. If the password does not match, the BAM code immediately terminates the download
and pushes the microcontroller into static mode.

3

DoclD14629 Rev 9 91/888

Microcontroller Boot RMO0017

52132

92/888

Censorship enabled (private password)

1.
2.

Since the flash is secured, the SSCM is required to read the private password.

The BAM code writes the serial password to the SSCM_PWCMPH and
SSCM_PWCMPL registers.

The BAM code then continues with the serial download (start address, data size and
data) until all the data has been copied to the SRAM.

In the meantime the SSCM has compared the private password in flash with the serial
download password the BAM code wrote into SSCM_PWCMPH and
SSCM_PWCMPL.

If the SSCM obtains a match in the passwords, the censorship is temporarily disabled
(until the next reset).

The SSCM updates the status of the security (SEC) bit to reflect whether the
passwords matched (SEC = 0) or not (SEC = 1)

Finally, the BAM code reads SEC. If SEC = 0, execution is transferred to the code in
the SRAM. If SEC = 1, the BAM code forces the microcontroller into static mode.

Figure 14 shows this in more detail.

3

DoclD14629 Rev 9

RMO0017

Microcontroller Boot

BAM tasks

If any frame
is received
incorrectly,
BAM code

pushes
device into
static mode

Y

Censorship enabled,
private password,
BAM running
serial boot mode

Y

Serial password
received

Y

BAM writes received
password to SSCM
registers

SSCM tasks

SSCM compares
registers to private
password in flash

Upper 32-bits to
SSCM_PWCMPH
Lower 32-bits to
SSCM_PWCMPL

Y

Start address
and data
length received

Y

Data download
received
and copied to SRAM

BAM reads

Y

SSCM_PWCMPH to NVPWD1
SYCM_PWCMPL to NVPWDO

Y

If passwords match,
un-censor device
until next POR

Y
Update SSCM_STATUS[SEC]
bit with
censorship state

A

SSCM_STATUS[SEC]

Is SEC bit

cleared
?

Y

BAM code pushes
microcontroller into

static mode

BAM code transfers
execution to user
code in SRAM

Figure 14. BAM serial boot mode flow for censorship enabled and private password

With LINFlexD, any receive error will result in static mode. With FlexCAN, the host will re-
transmit data if there has been no acknowledgment from the microcontroller. However there

3

DoclD14629 Rev 9

93/888

Microcontroller Boot RMO0017

Note:

5214

could be a situation where the receiver configuration has an error which would result in static
mode entry.

In a censored device booting with serial boot mode, it is possible to read the content of the
four 32-bit flash memory locations that make up the boot sector. For example, if the RCHW
is stored at address 0x0000_0000, the reads at address 0x0000_0000, 0x0000_0004,
0x0000_0008 and 0x0000_000C will return a correct value. No other flash memory
locations can be read.

Download start address, VLE bit and code size

The next 8 bytes received by the microcontroller contain a 32-bit Start Address, the VLE
mode bit and a 31-bit code Length as shown in Figure 15.

START_ADDRESS[31:16] ‘

START_ADDRESS[15:0] ‘

‘VLE‘

CODE_LENGTH[30:16] ‘

CODE_LENGTHI[15:0] ‘

Note:

5.2.1.5

94/888

Figure 15. Start address, VLE bit and download size in bytes

The VLE bit (Variable Length Instruction) is used to indicate whether the code to be
downloaded is Book VLE or Book IlI-E. This device family supports only VLE = 1; the bit is
used for backward compatibility.

The Start Address defines where the received data will be stored and where the MCU will
branch after the download is finished. The start address is 32-bit word aligned and the two
least significant bits are ignored by the BAM code.

The start address is configurable, but most not lie within the 0x4000_0000 to 0x4000_00FF
address range.

The Length defines how many data bytes have to be loaded.

Download data

Each byte of data received is stored in the microcontroller’s SRAM, starting from the address
specified in the previous protocol step.

The address increments until the number of bytes of data received matches the number of
bytes specified by the code length.

Since the SRAM is protected by 32-bit wide Error Correction Code (ECC), the BAM code
always writes bytes into SRAM grouped into 32-bit words. If the last byte received does not
fall onto a 32-bit boundary, the BAM code fills any additional bytes with 0x0.

Since the ECC on the SRAM has not been initialized (except for the bytes of data that have
just been downloaded), an additional dummy word of 0x0000_0000 is written at the end of
the downloaded data block to avoid any ECC errors during core prefetch.

3

DoclD14629 Rev 9

RMO0017 Microcontroller Boot

5.2.1.6 Execute code
The BAM code waits for the last data byte to be received. If the operating mode is censored
with a private password, then the BAM reads the SSCM status register to determine whether
the serial password matched the private password. If there was a password match then the
BAM code restores the initial configuration and transfers execution to the downloaded code
start address in SRAM. If the passwords did not match, the BAM code forces a static mode
entry.

Note: The watchdog is disabled at the start of BAM code execution. In the case of an unexpected
issue during BAM code execution, the microcontroller may be stalled and an external reset
required to recover the microcontroller.

5.2.2 LINFlexD (RS232) boot

5221 Configuration
Boot according to the LINFlexD boot mode download protocol (see Section 5.2.2.2: Protocol)
is performed by the LINFlexD_0 module in UART (RS232) mode. Pins used are:

e LINOTX mapped on PB[2]
e LINORX mapped on PBJ3]
Boot from LINFlexD uses the system clock driven by the 4-16 MHz external crystal oscillator
(FXOSC).
The LINFlexD controller is configured to operate at a baud rate = system clock
frequency/833, using an 8-bit data frame without parity bit and 1 stop bit.
Byte field
Start Stop
bit /DO><D1><D2><D3><D4><D5><D6><D7/ bit
Figure 16. LINFlexD bit timing in UART mode
5.2.2.2 Protocol
Table 18 summarizes the protocol and BAM action during this boot mode.
Table 18. UART boot mode download protocol
Protocol Host sent message BAM response Action
step message
1 64-bit password Password checked for validity and compared against

64-bit password

number of bytes
(MSB first)

(MSB first) stored password.
2 32-bit store address | 32-bit store address | Load address is stored for future use.
3 VLE bit + 31-bit VLE bit + 31-bit Size of download are stored for future use.

number of bytes
(MSB first)

Verify if VLE bit is setto 1

3

DoclD14629 Rev 9

95/888

Microcontroller Boot RMO0017

Table 18. UART boot mode download protocol(Continued)

Protocol Host sent message BAM response Action
step message
4 8-bit data are packed into a 32-bit word. This word is
8 bits of raw binar 8 bits of raw binar saved into SRAM starting from the “Load address”.
data y data y “Load address” increments until the number of data
received and stored matches the size as specified in the
previous step.
5 None None Branch to downloaded code
5.2.3 FlexCAN boot
5.2.3.1 Configuration
Boot according to the FlexCAN boot mode download protocol (see Section 5.2.3.2: Protocol)
is performed by the FlexCAN_0O module. Pins used are:
e CANOTX mapped on PB[0]
e CANORX mapped on PBJ[1]
Note: When the serial download via FlexCAN is selected and the device is part of a CAN network,

96/888

the serial download may stop unexpectedly if there is any other traffic on the network. To
avoid this situation, ensure that no other CAN device on the network is active during the
serial download process.

Boot from FlexCAN uses the system clock driven by the 4-16 MHz fast external crystal
oscillator.

The FlexCAN controller is configured to operate at a baud rate = system clock frequency/40
(see Table 16 for examples of baud rate).

It uses the standard 11-bit identifier format detailed in FlexCAN 2.0A specification.

FlexCAN controller bit timing is programmed with 10 time quanta, and the sample point is 2
time quanta before the end, as shown in Figure 17.

3

DoclD14629 Rev 9

RMO0017 Microcontroller Boot

/N
>< NRZ signal ()

SYNC_SEG Time segment 1 Time segment 2
A A

1 2
time quantum time quanta time quanta
1 bit time d
Transmit point Sample point

1 time quantum = 4 system clock periods

Figure 17. FlexCAN bit timing

5.2.3.2 Protocol
Table 19 summarizes the protocol and BAM action during this boot mode. All data are
transmitted byte wise.
Table 19. FlexCAN boot mode download protocol
Protocol Host sent message BAM response Action
step message
1 CAN ID 0x011 + CAN ID 0x001 + Password checked for validity and compared against
64-bit password 64-bit password stored password
2 CAN ID 0x012 + 32- | CAN ID 0x002 + 32- | Load address is stored for future use.
bit store address + | bit store address + Size of download are stored for future use.
VLE bit + 31-bit VLE bit + 31-hit Verify if VLE bitis setto 1
number of bytes number of bytes
3 8-bit data are packed into 32-bit words. These words are
CAN ID 0x013 + CAN ID 0x003 + saved into SRAM starting from the “Load address”.
8 to 64 bits of raw 8 to 64 bits of raw “Load address” increments until the number of data
binary data binary data received and stored matches the size as specified in the
previous step.
5 None None Branch to downloaded code

3

DoclD14629 Rev 9

97/888

Microcontroller Boot

RMO0017

5.3

5.3.1

5.3.2

98/888

System Status and Configuration Module (SSCM)

Introduction

The primary purpose of the SSCM is to provide information about the current state and
configuration of the system that may be useful for configuring application software and for
debug of the system.

On microcontrollers with a separate STANDBY power domain, the System Status block is
part of that domain.

System Status and Configuration Module
RevID
Hardmacro
Core i
Logic
< > .
Bus Peripheral
Interface 4+“—>r Bus

Interface

System i

Status

<+“—> Password

Comparator

Figure 18. SSCM block diagram

Features

The SSCM includes these features:
System Configuration and Status

Memory sizes/status

Microcontroller Mode and Security Status (including censorship and serial boot
information)

Search Code Flash for bootable sector
Determine boot vector

Device identification information (MCU ID Registers)
Debug Status Port enable and selection
Bus and peripheral abort enable/disable

3

DoclD14629 Rev 9

RMO0017 Microcontroller Boot
5.3.3 Modes of operation

The SSCM operates identically in all system modes.
534 Memory map and register description

Table 20 shows the memory map for the SSCM. Note that all addresses are offsets; the
absolute address may be calculated by adding the specified offset to the base address of the
SSCM.

Table 20. SSCM memory map

Address offset Register Location
0x00 System Status Register (SSCM_STATUS) on page 99
0x02 System Memory Configuration Register (SSCM_MEMCONFIG) on page 100
0x04 Reserved
0x06 Error Configuration (SSCM_ERROR) on page 101
0x08 Debug Status Port Register (SSCM_DEBUGPORT) on page 102
O0x0A Reserved
0x0C Password Comparison Register High Word (SSCM_PWCMPH) on page 103
0x10 Password Comparison Register Low Word (SSCM_PWCMPL) on page 103

All registers are accessible via 8-bit, 16-bit or 32-bit accesses. However, 16-bit accesses
must be aligned to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit
boundaries. As an example, the SSCM_STATUS register is accessible by a 16-bit read/write
to address ‘Base + 0x0002’, but performing a 16-bit access to ‘Base + 0x0003' is illegal.

5.34.1 System Status Register (SSCM_STATUS)

The System Status register is a read-only register that reflects the current state of the system.

Offset:0x00 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 4
0 0 0 0 § PUB|SEC| O BMODE 0 0 0 0 0
pd
w [|
Reset O 0 0 0 0 0 0 0 0/1 0/1 01 0 0 0 0 0

Table 21. SSCM_STATUS allowed register accesses

Access type 8-bit 16-bit 32-bit(
Read Allowed Allowed Allowed
Write Not allowed Not allowed Not allowed
1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).
DoclD14629 Rev 9 99/888

3

Microcontroller Boot RMO0017

Table 22. SSCM_STATUS field descriptions

Field Description

NXEN Nexus enabled

PUB Public Serial Access Status. This bit indicates whether serial boot mode with public password is
allowed.

0 Serial boot mode with private flash memory password is allowed

1 Serial boot mode with public password is allowed

SEC Security Status. This bit reflects the current security state of the flash memory.

0 The flash memory is not secured.
1 The flash memory is secured.

BMODE Device Boot Mode.

000 Reserved

001 FlexCAN_O Serial Boot Loader
010 LINFlexD_0 Serial Boot Loader
011 Single Chip

100 Reserved

101 Reserved

110 Reserved

111 Reserved

This field is only updated during reset.

5.34.2 System Memory Configuration Register (SSCM_MEMCONFIG)

The System Memory Configuration register is a read-only register that reflects the memory
configuration of the system.

Offset: 0x02 Access: Read
5 6 7 ‘ 8 9 10 1 ‘ 12 13 14 15
Rl O 0 0 0 0 PRSZzZ PVLB DTSz DVLD
w || | ||
Reset X X X X X X X X X X 1 X X X X 1

Figure 19. System Memory Configuration Register (SSCM_MEMCONFIG)

Table 23. SSCM_MEMCONFIG field descriptions

Field Description

PRSZ Code Flash Size
10000 128 KB
10001 256 KB
10010 384 KB
10011 512 KB

PVLB Code Flash Available

This bit identifies whether or not the on-chip code Flash is available in the system memory map. The
Flash may not be accessible due to security limitations, or because there is no Flash in the system.
1 Code Flash is available

0 Code Flash is not available

100/888 DoclD14629 Rev 9 ‘Yl

RMO0017 Microcontroller Boot
Table 23. SSCM_MEMCONFIG field descriptions(Continued)
Field Description
DTSz Data Flash Size
0000 No Data Flash
0011 64 KB
DVLD Data Flash Valid
This bit identifies whether or not the on-chip Data Flash is visible in the system memory map. The
Flash may not be accessible due to security limitations, or because there is no Flash in the system.
1 Data Flash is visible
0 Data Flash is not visible
Table 24. SSCM_MEMCONFIG allowed register accesses
Access type 8-bit 16-bit 32-bit
Read Allowed Allowed Allowed
(also reads SSCM_STATUS
register)
Write Not allowed Not allowed Not allowed
5.3.4.3 Error Configuration (SSCM_ERROR)
The Error Configuration register is a read-write register that controls the error handling of the
system.
Offset: 0x06 Access: Read/write
2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0
PAE | RAE
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 20. Error Configuration (SSCM_ERROR)
Table 25. SSCM_ERROR field descriptions
Field Description
PAE Peripheral Bus Abort Enable.

This bit enables bus aborts on any access to a peripheral slot that is not used on the device. This
feature is intended to aid in debugging when developing application code.

0 lllegal accesses to non-existing peripherals do not produce a Prefetch or Data Abort exception
1 lllegal accesses to non-existing peripherals produce a Prefetch or Data Abort exception

3

DoclD14629 Rev 9 10

1/888

Microcontroller Boot RMO0017

Table 25. SSCM_ERROR field descriptions(Continued)

Field Description

RAE Register Bus Abort Enable.

This bit enables bus aborts on illegal accesses to off-platform peripherals. lllegal accesses are defined
as reads or writes to reserved addresses within the address space for a particular peripheral. This
feature is intended to aid in debugging when developing application code.

0 lllegal accesses to peripherals do not produce a Prefetch or Data Abort exception

1 lllegal accesses to peripherals produce a Prefetch or Data Abort exception

Transfers to Peripheral Bus resources may be aborted even before they reach the Peripheral Bus (that
is, at the PBRIDGE level). In this case, bits PAE and RAE will have no effect on the abort.

Table 26. SSCM_ERROR allowed register accesses

Access type 8-bit 16-bit 32-bit
Read Allowed Allowed Allowed
Write Allowed Allowed Not allowed

5.3.4.4 Debug Status Port Register (SSCM_DEBUGPORT)

The Debug Status Port register is used to (optionally) provide debug data on a set of pins.

Offset: 0x08 Access: Read/write

10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0

DEBUG_MODE

Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21. Debug Status Port Register (SSCM_DEBUGPORT)

Table 27. SSCM_DEBUGPORT field descriptions

Field Description

DEBUG_MODE | Debug Status Port Mode.
This field selects the alternate debug functionality for the Debug Status Port.

000 No alternate functionality selected
001 Mode 1 selected
010 Mode 2 selected
011 Mode 3 selected
100 Mode 4 selected
101 Mode 5 selected
110 Mode 6 selected
111 Mode 7 selected

Table 28 describes the functionality of the Debug Status Port in each mode.

3

102/888 DoclD14629 Rev 9

RMO0017

Microcontroller Boot

Table 28. Debug status port modes

'ﬂ? Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 | Mode 6 | Mode 7
0 | SSCM_STATU | SSCM_STATU | SSCM_MEMCONF | SSCM_MEMCONF | Reserved | Reserved | Reserved
S[0] S[8] IG[O] IG[8]
1 | SSCM_STATU | SSCM_STATU | SSCM_MEMCONF | SSCM_MEMCONF | Reserved | Reserved | Reserved
S[1] S[9] IG[1] IG[9]
2 | SSCM_STATU | SSCM_STATU | SSCM_MEMCONF | SSCM_MEMCONF | Reserved | Reserved | Reserved
S[2] S[10] IG[2] IG[10]
3 | SSCM_STATU | SSCM_STATU | SSCM_MEMCONF | SSCM_MEMCONF | Reserved | Reserved | Reserved
S[3] S[11] IG[3] IG[11]
4 | SSCM_STATU | SSCM_STATU | SSCM_MEMCONF | SSCM_MEMCONF | Reserved | Reserved | Reserved
S[4] S[12] IG[4] IG[12]
5 | SSCM_STATU | SSCM_STATU | SSCM_MEMCONF | SSCM_MEMCONF | Reserved | Reserved | Reserved
S[5] S[13] IG[5] IG[13]
6 | SSCM_STATU | SSCM_STATU | SSCM_MEMCONF | SSCM_MEMCONF | Reserved | Reserved | Reserved
S[6] S[14] IG[6] IG[14]
7 | SSCM_STATU | SSCM_STATU | SSCM_MEMCONF | SSCM_MEMCONF | Reserved | Reserved | Reserved
S[7] S[15] IG[7] IG[15]
1. All signals are active high, unless otherwise noted
PINJ[O...7] referred to in Table 28 equates to PC[2..9] (Pad 34..41).
Table 29. SSCM_DEBUGPORT allowed register accesses
Access type 8-bit 16-bit 32-bit®
Read Allowed Allowed Not allowed
Write Allowed Allowed Not allowed

1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

5.3.4.5

Password comparison Registers

These registers provide a means for the BAM code to unsecure the device via the SSCM if
the password has been provided via serial download.

3

DoclD14629 Rev 9

103/888

Microcontroller Boot

RMO0017

Offset: Ox0C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R \ \ \ 0 \ 0 \ 0 \ 0 0 | 0 | 0 | 0 0 | 0 | 0 \ 0

W PWD_HI[31:16]
Reset 0 0 0 0 \ 0 0 0 0 \ 0 0 0 0 \ 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl 0 \ 0 \ 0 \ 0 0 \ 0 \ 0 \ 0 0 | 0 | 0 | 0 0 | 0 | 0 \ 0

W PWD_HI[15:0]
Reset 0 0 0 0 \ 0 0 0 0 \ 0 0 0 0 \ 0 0 0 0

Figure 22. Password Comparison Register High Word (SSCM_PWCMPH)

Offset: 0x10 Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R \ \ \ 0 \ 0 \ 0 \ 0 0 | 0 | 0 | 0 0 | 0 | 0 \ 0
w PWD_LO[31:16]
Reset 0 0 0 0 \ 0 0 0 0 \ 0 0 0 0 \ 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RloJo]o]Jo o]ofo]o o[ofo]o o |ofo]o
w PWD_LO[15:0]
Reset 0 0 0 0 \ 0 0 0 0 \ 0 0 0 0 \ 0 0 0 0

Figure 23. Password Comparison Register Low Word (SSCM_PWCMPL)

Table 30. Password Comparison Register field descriptions

Field Description
PWD_HI Upper 32 bits of the password
PWD_LO Lower 32 bits of the password

Table 31. SSCM_PWCMPH/L allowed register accesses

Access type 8-bit 16-bit 32-bit®
Read Allowed Allowed Allowed
Write Not allowed Not allowed Allowed

1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

In order to unsecure the device, the password needs to be written as follows: first the upper
word to the SSCM_PWCMPH register, then the lower word to the SSCM_PWCMPL register.
The SSCM compares the 64-bit password entered into the SSCM_PWCMPH /
SSCM_PWCMPL registers with the NVPWM[1,0] private password stored in the shadow
flash. If the passwords match then the SSCM temporarily uncensors the microcontroller.

104/888

DoclD14629 Rev 9

S74

RM0017 Clock Description
6 Clock Description
This chapter describes the clock architectural implementation for SPC560Bx and
SPC560Cx.
6.1 Clock architecture

3

System clocks are generated from three sources:

o Fast external crystal oscillator 4-16 MHz (FXOSC)
e Fastinternal RC oscillator 16 MHz (FIRC)

o Frequency modulated phase locked loop (FMPLL)
Additionally, there are two low power oscillators:

e Slow internal RC oscillator 128 kHz (SIRC)

e Slow external crystal oscillator 32 KHz (SXOSC)

The clock architecture is shown in Figure 24.

DoclD14629 Rev 9

105/888

9

r — ar -

Clock Description RM0017
____________ -
FXOSC FXOSC /110 /32 | FXOSC_div R
E_<mode>_FIRCON (4-16 MHz) FXOSC_CTL[OSCDIV] I d SYSCLK - Core
= = = s s = = = "] Platform
FIRC FIRC > Mto/32 FIRC_div > System
ME_<mode> FXOSCON (16 MHz) FIRC_TRIM[FIRCDIV] | Clock
p——— T _ Selector
- FMPLL FMPLL
g ME_<mode>[FMPLLON] & FMPLL_CR (e'g' 64 MHZ) NETEST:]) » /110116 P Peripheral
CGM_SC_DCO Set 1
A
> /1t0/16 Peripheral
Clock Monitor P Reset >
: Safe CGM_SC_DC1 Set 2
Unit
< Interrupt
> /1to0/16 Peripheral
CGM_SC_DC2 Set 3
r-— — =— — — - T — A
SX0SC | sxosc R /110/32 | SXosC_div SXOSC_div
SXOSC_CTL (32 KHz) i SXOSC_CTL[OSCDIV] I . "
- - - _ _ | Y/ o FlRC_dIV
re————— == = — — 9 API/RTC
SIRC | g|rc | MR | SIRC_clk_div SIRC_div
SIRC_CTL (128 kHz) " SIRC_CTL[SIRCDIV] I "
L—- - - — — _— -
SIRC_ [gwr
FXOSC R
EIRC » —{ CLKOUT (PA0)
CLKouT CGM_OCDS_SC[SELDIV]
FMPLL Selector
CGM_OCDS_SC[SELCTL]
Figure 24. SPC560Bx and SPC560Cx system clock generation
6.2 Clock gating
The SPC560Bx and SPC560Cx provides the user with the possibility of gating the clock to
the peripherals. Table 32 describes for each peripheral the associated gating register
address. See the ME_PCTLn section in this reference manual.
Additionally, peripheral set (1, 2, or 3) frequency can be configured to be an integer (1 to 16)
divided version of the main system clock. See the CGM_SC_DCO section in this reference
manual for detalils.
106/888 DocID14629 Rev 9 Kys

RM0017 Clock Description
Table 32. SPC560Bx and SPC560Cx — Peripheral clock sources

e g e
RPP_ZO0H Platform none (managed through ME mode) —
DSPI_n 44+n (n =0...2) 2
FlexCAN_n 16+n (n =0...5) 2
ADC 32 3
1>c 44 1
LINFlexD_n 48+n(n =0..3) 1
CTU 57 3
CANS 60 —
SIUL 68 —
WKUP 69 —
eMIOS_n 72+n (n =0..1) 3
RTC/API 91 —
PIT 92 —
CMU 104 —
1. See the ME_PCTL section in this reference manual for details.
2. “—"means undivided system clock.
6.3 Fast external crystal oscillator (FXOSC) digital interface

The FXOSC digital interface controls the operation of the 4-16 MHz fast external crystal
oscillator (FXOSC). It holds control and status registers accessible for application.

6.3.1 Main features

e Oscillator powerdown control and status reporting through MC_ME block

e Oscillator clock available interrupt
e Oscillator bypass mode

e Output clock division factors ranging from 1, 2, 3....32

6.3.2 Functional description

The FXOSC circuit includes an internal oscillator driver and an external crystal circuitry. It
provides an output clock that can be provided to the FMPLL or used as a reference clock to

specific modules depending on system needs.

The FXOSC can be controlled by the MC_ME module. The ME_xxx_MC[FXOSCON] bit
controls the powerdown of the oscillator based on the current device mode while
ME_GS[S_XOSC] register provides the oscillator clock available status.

After system reset, the oscillator is put into powerdown state and software has to switch on
when required. Whenever the crystal oscillator is switched on from the off state, the OSCCNT
counter starts and when it reaches the value EOCV[7:0]x512, the oscillator clock is made

3

DoclD14629 Rev 9

107/888

Clock Description RM0017

available to the system. Also, an interrupt pending FXOSC_CTL[l_OSC] bit is set. An
interrupt is generated if the interrupt mask bit M_OSC is set.

The oscillator circuit can be bypassed by setting FXOSC_CTL[OSCBYP]. This bit can only
be set by software. A system reset is needed to reset this bit. In this bypass mode, the output
clock has the same polarity as the external clock applied on the EXTAL pin and the oscillator

status is forced to ‘1’. The bypass configuration is independent of the powerdown mode of
the oscillator.

Table 33 shows the truth table of different oscillator configurations.

Table 33. Truth table of crystal oscillator

ME_xxx_MC[FXOSCON] | FXOSC_CTL[OSCBYP] XTAL EXTAL FXOSC Oscillator mode
0 0 No No crystal, 0 Powerdown, IDDQ
crystal, High Z
High Z
X 1 X Ext clock EXTAL Bypass, OSC
disabled
1 0 Crystal Crystal EXTAL Normal, OSC
enabled
Gnd Ext clock EXTAL Normal, OSC
enabled

The FXOSC clock can be further divided by a configurable factor in the range 1 to 32 to

generate the divided clock to match system requirements. This division factor is specified by
FXOSC_CTL[OSCDIV] field.

6.3.3 Register description
Address: 0xC3FE_0000 Access: Special read/write
0 1 2 3 4 5 6 7 8 9 10 11 | 12 13 14 15
Rl & 0 0
a
Wi % EOCV
Q
%)
O
RESET. o 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
16 17 18 19 | 20 21 22 23 | 24 25 26 27 | 28 29 30 31
Rl O 0 0 8 0 0 0 0 0 0 0
%))
w| O OSCDIV 0
| O
s Z
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25. Fast External Crystal Oscillator Control Register (FXOSC_CTL)

1. You can read this field, and you can write a value of “1” to it. Writing a “0” has no effect. A reset will also clear this bit.

2. You can write a value of "0" or "1" to this field. However, writing a "1" will clear this field, and writing "0" will have no effect on
the field value.

108/888

DoclD14629 Rev 9 ‘Yl

RM0017 Clock Description
Table 34. FXOSC_CTL field descriptions
Field Description
OSCBYP Crystal Oscillator bypass.
This bit specifies whether the oscillator should be bypassed or not.
0 Oscillator output is used as root clock
1 EXTAL is used as root clock
EOCV End of Count Value.
These bits specify the end of count value to be used for comparison by the oscillator stabilization
counter OSCCNT after reset or whenever it is switched on from the off state (OSCCNT runs on
the FXOSC). This counting period ensures that external oscillator clock signal is stable before it
can be selected by the system. When oscillator counter reaches the value EOCV x 512, the
crystal oscillator clock interrupt (I_OSC) request is generated. The OSCCNT counter will be kept
under reset if oscillator bypass mode is selected.
M_OSC Crystal oscillator clock interrupt mask.
0 Crystal oscillator clock interrupt is masked.
1 Crystal oscillator clock interrupt is enabled.
OSCDIV Crystal oscillator clock division factor.
This field specifies the crystal oscillator output clock division factor. The output clock is divided by
the factor OSCDIV+1.
I_OSC Crystal oscillator clock interrupt.
This bit is set by hardware when OSCCNT counter reaches the count value EOCV x 512.
0 No oscillator clock interrupt occurred.
1 Oscillator clock interrupt pending.
Note: Bus access errors are generated in only half of the non-implemented address space of
Oscillator External Interface (Crystal XOSC) and RCOSC Digital Interface (16MHz Internal
RC oscillator [IRC]). Do not access unimplemented address space for XOSC and RCOSC
register areas OR write software that is not dependent on receiving an error when access to
unimplemented XOSC and RCOSC space occurs
6.4 Slow external crystal oscillator (SXOSC) digital interface
6.4.1 Introduction
The SXOSC digital interface controls the operation of the 32 KHz slow external crystal
oscillator (SXOSC). It holds control and status registers accessible for application.
6.4.2 Main features
e Oscillator powerdown control and status
e Oscillator bypass mode
e Output clock division factors ranging from 1 to 32
6.4.3 Functional description

3

The SXOSC circuit includes an internal oscillator driver and an external crystal circuitry. It can
be used as a reference clock to specific modules depending on system needs.

DoclD14629 Rev 9 109/888

Clock Description RM0017

The SXOSC can be controlled via the SXOSC_CTL register. The OSCON bit controls the
powerdown while bit S_OSC provides the oscillator clock available status.

After system reset, the oscillator is put to powerdown state and software has to switch on
when required. Whenever the SXOSC is switched on from off state, the OSCCNT counter
starts and when it reaches the value EOCV[7:0]x512, the oscillator clock is made available
to the system.

The oscillator circuit can be bypassed by writing SXOSC_CTL[OSCBYP] bit to ‘1’. This bit

can only be set by software. A system reset is needed to reset this bit. In this bypass mode,
the output clock has the same polarity as the external clock applied on the OSC32K_EXTAL
pin and the oscillator status is forced to ‘1’. The bypass configuration is independent of the

powerdown mode of the oscillator.

Table 35 shows the truth table of different configurations of the oscillator.

Table 35. SXOSC truth table

SXOSC_CTL fields
OSC32K_XTAL | OSC32K_EXTAL SXOsC Oscillator MODE
OSCON | OSCBYP
0 0 No crystal, High Z | No crystal, High Z 0 Powerdown, IDDQ
X 1 X External clock OSC32K_EXTAL Bypass, OSC disabled
1 0 Crystal Crystal OSC32K_EXTAL Normal, OSC enabled
Ground External clock OSC32K_EXTAL Normal, OSC enabled

The SXOSC clock can be further divided by a configurable factor in the range 1 to 32 to
generate the divided clock to match system requirements. This division factor is specified by
SXOSC_CTL[OSCDIV] field.

6.4.4 Register description

Address: OxC3FE_0040 Access: Special read/write
0 1 2 3 4 5 6 7 8 9 10 11 | 12 13 14 15
R| & 0
e
Wi & EOCV
O
)
@]
RESET: o 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
6 17 18 19 | 20 21 22 23 | 24 25 26 27 | 28 29 30 31
R 3 | =z
0 0 0 0 0 0 0 0 0 o) e
OSCDIV | (@)
w 0]
W (@)
RESET: ¢ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26. Slow External Crystal Oscillator Control Register (SXOSC_CTL)

1. You can read this field, and you can write a value of “1” to it. Writing a “0” has no effect. A reset will also clear this bit.

110/888 DoclD14629 Rev 9 ‘Yl

RM0017 Clock Description

Table 36. SXOSC_CTL field descriptions

Field Description

OSCBYP Crystal Oscillator bypass.
This bit specifies whether the oscillator should be bypassed or not.

0 Oscillator output is used as root clock.
1 OSC32K_EXTAL is used as root clock.

EOCV End of Count Value.

This field specifies the end of count value to be used for comparison by the oscillator stabilization
counter OSCCNT after reset or whenever it is switched on from the off state. This counting period
ensures that external oscillator clock signal is stable before it can be selected by the system.
When oscillator counter reaches the value EOCV x 512, the crystal oscillator status (S_OSC) is
set. The OSCCNT counter will be kept under reset if oscillator bypass mode is selected.

OSCDIV Crystal oscillator clock division factor.

This field specifies the crystal oscillator output clock division factor. The output clock is divided by
the factor OSCDIV + 1.

S _0sC Crystal oscillator status.

0 Crystal oscillator output clock is not stable.
1 Crystal oscillator is providing a stable clock.

OSCON Crystal oscillator enable.

0 Crystal oscillator is switched off.
1 Crystal oscillator is switched on.

Note: The 32 KHz slow external crystal oscillator is by default always ON, but can be configured
OFF in standby by setting the OSCON bit.

6.5 Slow internal RC oscillator (SIRC) digital interface

6.5.1 Introduction

The SIRC digital interface controls the 128 kHz slow internal RC oscillator (SIRC). It holds
control and status registers accessible for application.

6.5.2 Functional description

The SIRC provides a low frequency (fgrc) clock of 128 kHz requiring very low current
consumption. This clock can be used as the reference clock when a fixed base time is
required for specific modules.

SIRC is always on in all device modes except STANDBY mode. In STANDBY mode, it is
controlled by SIRC_CTL[SIRCON_STDBY] bit. The clock source status is updated in
SIRC_CTL[S_SIRC] bit.

The SIRC clock can be further divided by a configurable division factor in the range from 1 to
32 to generate the divided clock to match system requirements. This division factor is
specified by SIRC_CTL[SIRCDIV] bits.

The SIRC output frequency can be trimmed using SIRC_CTL[SIRCTRIM]. After a power-on
reset, the SIRC is trimmed using a factory test value stored in test flash memory. However,
after a power-on reset the test flash memory value is not visible at SIRC_CTL[SIRCTRIM]

3

DoclD14629 Rev 9 111/888

Clock Description RM0017

and this field shows a value of zero. Therefore, be aware that the SIRC_CTL[SIRCTRIM]
does not reflect the current trim value until you have written to this field. Pay particular
attention to this feature when you initiate a read-modify-write operation on SIRC_CTL,
because a SIRCTRIM value of zero may be unintentionally written back and this may alter
the SIRC frequency. In this case, you should calibrate the SIRC using the CMU or be sure
that you only write to the upper 16 bits of this SIRC_CTL.

In this oscillator, two's complement trimming method is implemented. So the trimming code
increases from —16 to 15. As the trimming code increases, the internal time constant
increases and frequency reduces. Please refer to device datasheet for average frequency
variation of the trimming step.

6.5.3 Register description

Address: 0xC3FE_0080 Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0
SIRCTRIM
w
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R Q o
0 0 0 0 0 0 el 0 0 0 E
0 n
SIRCDIV >
w o}
O
@
n
RESET. o 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
Figure 27. Low Power RC Control Register (SIRC_CTL)
Table 37. SIRC_CTL field descriptions
Field Description
SIRCTRIM SIRC trimming bits.
This field corresponds (via two’s complement) to a trim factor of —16 to +15.
A +1 change in SIRCTRIM decreases the current frequency by AgircTriv (S€€ the device
data sheet).
A -1 change in SIRCTRIM increases the current frequency by Agirctrim (S€€ the device data
sheet).
SIRCDIV SIRC clock division factor.
This field specifies the SIRC oscillator output clock division factor. The output clock is divided
by the factor SIRCDIV+1.

3

112/888 DoclD14629 Rev 9

RM0017 Clock Description

Table 37. SIRC_CTL field descriptions(Continued)

Field Description

S _SIRC SIRC clock status.

0 SIRC is not providing a stable clock.
1 SIRC is providing a stable clock.

SIRCON_STDBY | SIRC control in STANDBY mode.

0 SIRC is switched off in STANDBY mode.
1 SIRC is switched on in STANDBY mode.

6.6 Fast internal RC oscillator (FIRC) digital interface

6.6.1 Introduction

The FIRC digital interface controls the 16 MHz fast internal RC oscillator (FIRC). It holds
control and status registers accessible for application.

6.6.2 Functional description

The FIRC provides a high frequency (fgrc) clock of 16 MHz. This clock can be used to

accelerate the exit from reset and wakeup sequence from low power modes of the system.
It is controlled by the MC_ME module based on the current device mode. The clock source
status is updated in ME_GS[S_RC]. Please refer to the MC_ME chapter for further detalils.

The FIRC can be further divided by a configurable division factor in the range from 1 to 32 to
generate the divided clock to match system requirements. This division factor is specified by
RC_CTL[RCDIV] bits.

The FIRC output frequency can be trimmed using FIRC_CTL[FIRCTRIM]. After a power-on
reset, the FIRC is trimmed using a factory test value stored in test flash memory. However,
after a power-on reset the test flash memory value is not visible at FIRC_CTL[FIRCTRIM],
and this field will show a value of zero. Therefore, be aware that the FIRC_CTL[FIRCTRIM]
field does not reflect the current trim value until you have written to it. Pay particular attention
to this feature when you initiate a read-modify-write operation on FIRC_CTL, because a
FIRCTRIM value of zero may be unintentionally written back and this may alter the FIRC
frequency. In this case, you should calibrate the FIRC using the CMU or ensure that you write
only to the upper 16 bits of this FIRC_CTL.

In this oscillator, two's complement trimming method is implemented. So the trimming code
increases from —32 to 31. As the trimming code increases, the internal time constant
increases and frequency reduces. Please refer to device datasheet for average frequency
variation of the trimming step.

During STANDBY mode entry process, the FIRC is controlled based on
ME_STANDBY_MC[RCON] bit. This is the last step in the standby entry sequence. On any
system wake-up event, the device exits STANDBY mode and switches on the FIRC. The
actual powerdown status of the FIRC when the device is in standby is provided by
RC_CTL[FIRCON_STDBY] bit.

3

DoclD14629 Rev 9 113/888

Clock Description RM0017

6.6.3 Register description
Address: 0xC3FE_0060 Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Rl O 0 0 0 0 0
FIRCTRIM
W
RESET. o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 | 20 21 22 23 | 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0
FIRCDIV
\W
RESET. o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 28. FIRC Oscillator Control Register (FIRC_CTL)
Table 38. FIRC_CTL field descriptions
Field Description

FIRCTRIM FIRC trimming bits.

This field corresponds (via two's complement) to a trim factor of —16 to +15.

A +1 change in FIRCTRIM decreases the current frequency by Apjrctrim (S€€ the device data
sheet).

A -1 change in SIRCTRIM increases the current frequency by AgjrcTriv (S€€ the device data
sheet).

FIRCDIV FIRC clock division factor.

This field specifies the FIRC oscillator output clock division factor. The output clock is divided by
the factor FIRCDIV+1.

Note:

6.7

6.7.1

6.7.2

114/888

Bus access errors are generated in only half of the non-implemented address space of
Oscillator External Interface (Crystal XOSC) and RCOSC Digital Interface (16MHz Internal
RC oscillator [IRC]). Do not access unimplemented address space for XOSC and RCOSC
register areas OR write software that is not dependent on receiving an error when access to
unimplemented XOSC and RCOSC space occurs

Frequency-modulated phase-locked loop (FMPLL)

Introduction

This section describes the features and functions of the FMPLL module implemented in the
device.

Overview

The FMPLL enables the generation of high speed system clocks from a common 4-16 MHz
input clock. Further, the FMPLL supports programmable frequency modulation of the system
clock. The FMPLL multiplication factor and output clock divider ratio are all software
configurable.

DoclD14629 Rev 9 ‘Yl

RM0017 Clock Description
SPC560Bx and SPC560Cx has one FMPLL that can generate the system clock and takes
advantage of the FM mode.

Note: The user must take care not to program device with a frequency higher than allowed (no

hardware check).
The FMPLL block diagram is shown in Figure 29.

FXOSC

Charge PHI

Pump
Low Pass Vveo ODF »

Filter

IDF BUFFER

A 4

v

A

NDIV
Loop
Frequency
Divider

Figure 29. FMPLL block diagram

6.7.3 Features

The FMPLL has the following major features:

Input clock frequency 4 MHz—-16 MHz
Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz

Frequency divider (FD) for reduced frequency operation without forcing the FMPLL to
relock

Frequency modulated FMPLL

— Modulation enabled/disabled through software

— Triangle wave modulation

Programmable modulation depth

— 10.25% to +4% deviation from center spread frequency(e)
— —0.5% to +8% deviation from down spread frequency

— Programmable modulation frequency dependent on reference frequency
Self-clocked mode (SCM) operation

4 available modes

Normal mode

Progressive clock switching

Normal mode with frequency modulation

Powerdown mode

6.7.4 Memory map(f)

Table 39 shows the memory map of the FMPLL.

e.

Spread spectrum should be programmed in line with maximum datasheet frequency figures.

f.FMPLL_x are mapped through the ME_CGM register slot

3

DoclD14629 Rev 9 115/888

Clock Description RM0017

Table 39. FMPLL memory map
Base address: OxC3FE_00AO

Address offset Register Location
0x0 Control Register (CR) on page 116
Ox4 Modulation Register (MR) on page 118

6.7.5 Register description

The FMPLL operation is controlled by two registers. Those registers can be accessed and
written in supervisor mode only.

6.7.5.1 Control Register (CR)

Offset: 0x0 Access: Supervisor read/write
0 1 2 3 ‘ 4 5 6 7 8 9 10 1 ‘ 12 13 14 15
R 0
IDF ODF NDIV
w

ResetOOOO‘OOlOOlOO‘OOOO

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
L
) 9 5 | <
N2
% O| Lx) O <§(I-LI
0 0 0 0 0 0 0) 0 X 0 0] ®] I = 1
O O | —'I - <
o @] | wn < I'L|
| | Ch -
pd z) _|
L - = o
W wlc o wlc
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Figure 30. Control Register (CR)
Table 40. CR field descriptions
Field Description
IDF The value of this field sets the FMPLL input division factor as described in Table 41.
ODF The value of this field sets the FMPLL output division factor as described in Table 42.
NDIV The value of this field sets the FMPLL loop division factor as described in Table 43.

EN_PLL_SW | This bit is used to enable progressive clock switching. After the PLL locks, the PLL output

initially is divided by 8, and then progressively decreases until it reaches divide-by-1.

0 Progressive clock switching disabled.

1 Progressive clock switching enabled.

Note: Progressive clock switching should not be used if a non-changing clock is needed, such
as for serial communications, until the division has finished.

UNLOCK_ONCE | This bit is a sticking indication of FMPLL loss of lock condition. UNLOCK_ONCE is set when
the FMPLL loses lock. Whenever the FMPLL reacquires lock, UNLOCK_ONCE remains set.
Only a power-on reset clears this bit.

116/888 DoclD14629 Rev 9 ‘Yl

RM0017 Clock Description

Table 40. CR field descriptions(Continued)

Field Description
I_LOCK This bit is set by hardware whenever there is a lock/unlock event.
S_LOCK This bit is an indication of whether the FMPLL has acquired lock.

0: FMPLL unlocked
1: FMPLL locked
Note:

PLL_FAIL_MASK | This bit is used to mask the pll_fail output.

0 pll_fail not masked.
1 pll_fail masked.

PLL_FAIL_FLAG | This bit is asynchronously set by hardware whenever a loss of lock event occurs while FMPLL
is switched on. It is cleared by software writing ‘1.

Table 41. Input divide ratios

IDF[3:0] Input divide ratios
0000 Divide by 1
0001 Divide by 2
0010 Divide by 3
0011 Divide by 4
0100 Divide by 5
0101 Divide by 6
0110 Divide by 7
0111 Divide by 8
1000 Divide by 9
1001 Divide by 10
1010 Divide by 11
1011 Divide by 12
1100 Divide by 13
1101 Divide by 14
1110 Divide by 15
1111 Clock Inhibit

Table 42. Output divide ratios

ODF[1:0] Output divide ratios
00 Divide by 2
01 Divide by 4
10 Divide by 8
11 Divide by 16
"_l DoclD14629 Rev 9 117/888

Clock Description RM0017

Table 43. Loop divide ratios

NDIV[6:0] Loop divide ratios

0000000-0011111 —

0100000 Divide by 32
0100001 Divide by 33
0100010 Divide by 34
1011111 Divide by 95
1100000 Divide by 96

1100001-1111111 —

6.7.5.2 Modulation Register (MR)

Offset: Ox4 Access: Supervisor read/write
0 1 2 3 ‘ 4 5 6 7 8 9 10 11 | 12 13 14 15
0
R 2 .
@ a MOD_PERIOD
o' x
i 7
'_
0
RESET. o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RI &
W EI INC_STEP
LL
RESET. o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 31. Modulation Register (MR)
Table 44. MR field descriptions
Field Description

STRB_BYPASS | Strobe bypass.

The STRB_BYPASS signal is used to bypass the strobe signal used inside FMPLL to latch the

correct values for control bits (INC_STEP, MOD_PERIOD and SPRD_SEL).

0 Strobe is used to latch FMPLL modulation control bits

1 Strobe is bypassed. In this case control bits need to be static. The control bits must be changed
only when FMPLL is in powerdown mode.

SPRD_SEL | Spread type selection.
The SPRD_SEL controls the spread type in Frequency Modulation mode.

0 Center SPREAD
1 Down SPREAD

3

118/888 DoclD14629 Rev 9

RMO0017

Clock Description

Table 44. MR field descriptions(Continued)

Field Description
MOD_PERIOD | Modulation period.
The MOD_PERIOD field is the binary equivalent of the value modperiod derived from following
formula:
modperiod= i
4xf0d
where:
fref: represents the frequency of the feedback divider
fmog: represents the modulation frequency
FM_EN Frequency Modulation Enable. The FM_EN enables the frequency modulation.
0 Frequency modulation disabled
1 Frequency modulation enabled
INC_STEP Increment step.
The INC_STEP field is the binary equivalent of the value incstep derived from following formula:
(2"°_1)x md x MDF
Incstep = round(mo x5 x MODPERIOD)
where:
md: represents the peak modulation depth in percentage (Center spread -- pk-pk=+/-md,
Downspread -- pk-pk=-2xmd)
MDF: represents the nominal value of loop divider (CR[NDIV])
6.7.6 Functional description

6.7.6.1

Normal mode

In Normal Mode the FMPLL inputs are driven by the CR. This means that, when the FMPLL
is in lock state, the FMPLL output clock (PHI) is derived by the reference clock (XOSC)
through this relation:

clkin-NDIV

Phi= 4 DF-ODF

where the value of IDF, NDIV and ODF are set in the CR and can be derived from Table 41,
Table 42 and Table 43.

Table 45. FMPLL lookup table

Crystal frequency FMPLL output CR field values
(MHz) frequency (MHz) VCO frequency (MHz)
IDF ODF NDIV
8 32 0 2 32 256
64 0 2 64 512
80 0 1 40 320

3

DoclD14629 Rev 9 119/888

Clock Description

RMO0017

Table 45. FMPLL lookup table(Continued)

Crystal requency || FMPLL output e velues VGO frequency (WHo)
IDF ODF NDIV
16 32 1 2 32 256
64 1 2 64 512
80 1 1 40 320
40 32 4 2 32 256
64 4 2 64 512
80 3 1 32 320

6.7.6.2 Progressive clock switching

Progressive clock switching allows to switch the system clock to FMPLL output clock
stepping through different division factors. This means that the current consumption
gradually increases and, in turn, voltage regulator response is improved.

This feature can be enabled by programming CR[EN_PLL_SW] bit. When enabled, the
system clock is switched to divided PHI. The FMPLL_clk divider is then progressively
decreased to the target divider as shown in Table 46.

Table 46. Progressive clock switching on pll_select rising edge

Number of FMPLL output clock cycles

FMPLL_clk frequency
(FMPLL output clock frequency)

8 (FMPLL output clock frequency)/8

16 (FMPLL output clock frequency)/4

32 (FMPLL output clock frequency)/2
onward FMPLL output clock frequency

FMPLL output clock ———;

Division factors of 8, 4,2 or 1 —» FMPLL_clk

Figure 32. FMPLL output clock division flow during progressive switching

6.7.6.3 Normal mode with frequency modulation

The FMPLL default mode is without frequency modulation enabled. When frequency

modulation is enabled, however, two parameters must be set to generate the desired level of
modulation: the PERIOD, and the STEP. The modulation waveform is always a triangle wave
and its shape is not programmable.

FM mode is activated in two steps:

120/888 DoclD14629 Rev 9

3

RMO0017

Clock Description

Note:

6.7.6.4

3

1. Configure the FM mode characteristics: MOD_PERIOD, INC_STEP.

2. Enable the FM mode by programming bit FM_EN of the MR to ‘1’. FM mode can only
be enabled when FMPLL is in lock state.

There are two ways to latch these values inside the FMPLL, depending on the value of bit
STRB_BYPASS in the MR.

If STRB_BYPASS is low, the modulation parameters are latched in the FMPLL only when the
strobe signal goes high for at least two cycles of CLKIN clock. The strobe signal is
automatically generated in the FMPLL digital interface when the modulation is enabled
(FM_EN goes high) if the FMPLL is locked (S_LOCK = 1) or when the modulation has been
enabled (FM_EN = 1) and FMPLL enters lock state (S_LOCK goes high).

If STRB_BYPASS is high, the strobe signal is bypassed. In this case, control bits
(MOD_PERIOD[12:0], INC_STEP[14:0], SPREAD_CONTROL) need to be static or
hardwired to constant values. The control bits must be changed only when the FMPLL is in
powerdown mode.

The modulation depth in % is

100 x 5 x INCSTEPXMODPERIOD)
2®~1)x MDF

ModulationDepth = (

The user must ensure that the product of INCTEP and MODPERIOD is less than (215-1).

Frequency

Figure 33. Frequency modulation

Powerdown mode

To reduce consumption, the FMPLL can be switched off when not required by programming
the registers ME_x_MC on the MC_ME module.

DoclD14629 Rev 9 121/888

Clock Description RM0017

6.7.7

6.8

6.8.1

6.8.2

122/888

Recommendations

To avoid any unpredictable behavior of the FMPLL clock, it is recommended to follow these
guidelines:

e The FMPLL VCO frequency should reside in the range 256 MHz to 512 MHz. Care is
required when programming the multiplication and division factors to respect this
requirement.

e The user must change the multiplication, division factors only when the FMPLL output
clock is not selected as system clock. Use progressive clock switching if system clock
changes are required while the PLL is being used as the system clock source.
MOD_PERIOD, INC_STEP, SPREAD_SEL bits should be modified before activating
the FM mode. Then strobe has to be generated to enable the new settings. If
STRB_BYP is set to ‘1’ then MOD_PERIOD, INC_STEP and SPREAD_SEL can be
modified only when FMPLL is in powerdown mode.

e Use progressive clock switching (FMPLL output clock can be changed when it is the
system clock, but only when using progressive clock switching).

Clock monitor unit (CMU)

Introduction

The Clock Monitor Unit (CMU), also referred to as Clock Quality Checker or Clock Fault
Detector, serves two purposes. The main task is to permanently supervise the integrity of the
various clock sources, for example a crystal oscillator or FMPLL. In case the FMPLL leaves
an upper or lower frequency boundary or the crystal oscillator fails it can detect and forward
these kind of events towards the MC_ME and MC_CGM. The clock management unitin turn
can then switch to a SAFE mode where it uses the default safe clock source (FIRC), reset
the device or generate the interrupt according to the system needs.

It can also monitor the external crystal oscillator clock, which must be greater than the internal
RC clock divided by a division factor given by CMU_CSR[RCDIV], and generates a system
clock transition request or an interrupt when enabled.

The second task of the CMU is to provide a frequency meter, which allows to measure the
frequency of one clock source vs. a reference clock. This is useful to allow the calibration of
the on-chip RC oscillator(s), as well as being able to correct/calculate the time deviation of a
counter which is clocked by the RC oscillator.

Main features

. FIRC, SIRC, SXOSC oscillator frequency measurement using FXOSC as reference
clock

e External oscillator clock monitoring with respect to FIRC_clk/n clock

e FMPLL clock frequency monitoring for a high and low frequency range with FIRC as
reference clock

e Event generation for various failures detected inside monitoring unit

3

DoclD14629 Rev 9

RMO0017

Clock Description

6.8.3

Block diagram

CKSEL1[1:0]

CMU_MDR

FHH_FLL_OR_evt_a

FIRC_clk
00
SIRC_clk
01
SXOSC_clk
10 1
FIRC_clk :\'>
1 CMU_FDR
MUX1] Frequency Meter
FXOSC_clk
XOSC Supervisor } OLR_evt
FXOSC <FIRC/n
XXOSC ON/OFF
From MC_ME
CMU_HFREFR
FMPLL > hfref D—’
OR
FMPLL < Ifref FMPLL ON/OFF
FMPLL From MC_ME

CMU_LFREFR

FMPLL Supervisor

OLR_evt: It is the event signaling XOSC failure when asserted. When this signal is asserted, RGM may generate reset, interrupt

or SAFE request based on the RGM configuration.

FHH_FLL_OR_evt_a: It is the event signaling FMPLL failure when asserted. Based on the CMU_HFREFR and CMU_LFREFR
configuration, if the FMPLL is greater than high frequency range or less than the low frequency range configuration, this signal is
generated. When this signal is asserted, RGM may generate reset, interrupt or SAFE request based on the RGM configuration.

3

Figure 34. Clock Monitor Unit diagram

DoclD14629 Rev 9

123/888

Clock Description RM0017

6.8.4

6.8.4.1

Note:

6.8.4.2

Note:

Note:

Note:

124/888

Functional description

The clock and frequency names referenced in this block are defined as follows:
e FXOSC_clk: clock coming from the fast external crystal oscillator

e SXOSC_clk: clock coming from the slow external crystal oscillator

e SIRC_clk: clock coming from the slow (low frequency) internal RC oscillator
e FIRC_clk: clock coming from the fast (high frequency) internal RC oscillator
e FMPLL_clk: clock coming from the FMPLL

e fexosc cik frequency of fast external crystal oscillator clock

. fSXOSC_clk: frequency of slow external crystal oscillator clock

e fgre Cﬂ(: frequency of slow (low frequency) internal RC oscillator

. fHRC_dk: frequency of fast (high frequency) internal RC oscillator

. fFMPL_,__dk: frequency of FMPLL clock

Crystal clock monitor

If fexosc cik iS less than frre ok divided by 2RCPV bits of the CMU_CSR and the FXOSC_clk

is ‘ON’ as signaled by the MC_ME then:

e An event pending bit OLRI in CMU_ISR is set.

e Afailure event OLR is signaled to the MC_RGM which in turn can automatically switch
to a safe fallback clock and generate an interrupt or reset.

Functional CMU monitoring can only be guaranteed when the FXOSC frequency is greater
than (FIRC / 2RCPVY + 0.5 MHz, , in order to guarantee correct FXOSC monitoring.

FMPLL clock monitor

The fempLL_cik can be monitored by programming bit CME of the CMU_CSR register to ‘1".

The FMPLL_clk monitor starts as soon as bit CME is set. This monitor can be disabled at any

time by writing bit CME to ‘0’.

If fempLL_cik IS greater than a reference value determined by bits HFREF[11:0] of the

CMU_HFREFR and the FMPLL_clk is ‘ON’, as signaled by the MC_ME, then:

e An event pending bit FHHI in CMU_ISR is set.

e Afailure event is signaled to the MC_RGM which in turn can generate an interrupt or
safe mode request or functional reset depending on the programming model.

If fempLL ik IS less than a reference value determined by bits LFREF[11:0] of the
CMU_LFREFR and the FMPLL_clk is ‘ON’, as signaled by the MC_ME, then:

e Anevent pending bit FLLI in CMU_ISR is set.
e Afailure event FLL is signaled to the MC_RGM which in turn can generate an interrupt
or safe mode request or functional reset depending on the programming model.

Functional CMU monitoring can only be guaranteed when the FMPLL frequency is greater
than (FIRC / 4) + 0.5 MHz, in order to guarantee correct FMPLL monitoring.

The internal RC oscillator is used as reliable reference clock for the clock supervision. In
order to avoid false events, proper programming of the dividers is required. These have to
take into account the accuracy and frequency deviation of the internal RC oscillator.

If PLL frequency goes out of range, the CMU shall generate FMPLL fll/fhh event. It takes
approximately 5 us to generate this event.

DoclD14629 Rev 9 ‘Yl

RMO0017

Clock Description

6.8.4.3

Frequency meter

The purpose of the frequency meter is twofold:
e to measure the frequency of the oscillators SIRC, FIRC or SXOSC
e to calibrate an internal RC oscillator (SIRC or FIRC) using a known frequency

Hint: This value can then be stored into the flash so that application software can reuse it
later on.

The reference clock is always the FXOSC_clk. The frequency meter returns a precise value
of frequencies fsxosc cik: fEIRC clk OF fsirc ¢k @ccording to CKSELL1 bit value. The measure
starts when bit SFM (Start Frequency Measure) in the CMU_CSR is set to ‘1’. The
measurement duration is given by the CMU_MDR in numbers of clock cycles of the selected
clock source with a width of 20 bits. Bit SFM is reset to ‘0’ by hardware once the frequency
measurement is done and the count is loaded in the CMU_FDR. The frequency fx(g) can be
derived from the value loaded in the CMU_FDR as follows:

Equation 1 f, = (fexosc X MD) /' n

where n is the value in the CMU_FDR and MD is the value in the CMU_MDR.

The frequency meter by default evaluates frirc ¢k, but software can swap to fgirc cik OF
fsxosc_cik Py programming the CKSEL bits in the CMU_CSR.

6.8.5

Memory map and register description

The memory map of the CMU is shown in Table 47.

Table 47. CMU memory map

Base address: OxC3FE_0100

Register name Address offset | Reset value | Location
Control Status Register (CMU_CSR) 0x00 0x00000006 | on page 126
Frequency Display Register (CMU_FDR) 0x04 0x00000000 | on page 127
High Frequency Reference Register FMPLL (CMU_HFREFR) 0x08 O0x00000FFF | on page 127
Low Frequency Reference Register FMPLL (CMU_LFREFR) 0x0C 0x00000000 | on page 128
Interrupt Status Register (CMU_ISR) 0x10 0x00000000 | on page 128
Reserved 0x14 0x00000000 —
Measurement Duration Register (CMU_MDR) 0x18 0x00000000 | on page 129
g. x=FIRC,SIRC or SXOSC
"_l DoclD14629 Rev 9 125/888

Clock Description RM0017

6.8.5.1 Control Status Register (CMU_CSR)
Offset: 0x00 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R O 0 a 0 0 0 0 0 0

W z

n
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R{ O 0 0 0 0 0 0 0 0 0 0 <|
W CKSEL1 RCDIV UEJ
O
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Figure 35. Control Status Register (CMU_CSR)

1. You can read this field, and you can write a value of "1" to it. Writing a "0" has no effect. A reset will also clear this bit.

Table 48. CMU_CSR field descriptions

Field

Description

SFM

Start frequency measure.

The software can only set this bit to start a clock frequency measure. It is reset by hardware when
the measure is ready in the CMU_FDR register.

0 Frequency measurement completed or not yet started.

1 Frequency measurement not completed.

CKSEL1

Clock oscillator selection bit.

CKSEL1 selects the clock to be measured by the frequency meter.
00 FIRC_clk selected.

01 SIRC_clk selected.

10 SXOSC_clk selected.

11 FIRC_clk selected.

RCDIV

RC clock division factor.

These bits specify the RC clock division factor. The output clock is FIRC_clk divided by the factor
2RCDWV This output clock is used to compare with FXOSC_clk for crystal clock monitor feature.The
clock division coding is as follows.

00 Clock divided by 1 (No division)

01 Clock divided by 2

10 Clock divided by 4

11 Clock divided by 8

CME_A

FMPLL_O clock monitor enable.
0 FMPLL_O monitor disabled.
1 FMPLL_O monitor enabled.

126/888

3

DoclD14629 Rev 9

RMO0017

Clock Description

6.8.5.2 Frequency Display Register (CMU_FDR)

Offset: 0x04 Access: Read-only
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 0 0 0 FD[19:16]
w [
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31

R FD[15:0]

w [[[[[[[[[[|

Reset 0 0 0 0 0 0 0 0 0 0 0 0

Figure 36. Frequency Display Register (CMU_FDR)

Table 49. CMU_FDR field descriptions

Field Description

FD Measured frequency bits.

Note: x = FIRC, SIRC or SXOSC.

This register displays the measured frequency f, with respect to frxosc. The measured value is
given by the following formula: f, = (fexosc * MD) / n, where n is the value in CMU_FDR register.

6.8.5.3 High Frequency Reference Register FMPLL (CMU_HFREFR)

Offset: 0x08 Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 ‘ 24 25 26 27

28 29 30 31

HFREF

Reset00001111\1111

1 1 1 1

Figure 37. High Frequency Reference Register FMPLL (CMU_HFREFR)

Table 50. CMU_HFREFR field descriptions

Field Description

HFREF High Frequency reference value.

(HFREF - 16) X (fF|RC = 4)

This field determines the high reference value for the FMPLL clock. The reference value is given by:

3

DoclD14629 Rev 9

127/888

Clock Description RM0017

6.8.5.4 Low Frequency Reference Register FMPLL (CMU_LFREFR)

Offset: Ox0C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31

LFREF

Reset 0 0 0 o0]0 o0 o0 0|0 o o0 0[]0 o0 o0 O
Figure 38. Low Frequency Reference Register FMPLL (CMU_LFREFR)

Table 51. CMU_LFREFR field descriptions

Field Description

LFREF Low Frequency reference value.
This field determines the low reference value for the FMPLL. The reference value is given by:
(LFREF =+ 16) x (fF|RC +4).

6.8.5.5 Interrupt Status Register (CMU_ISR)

Offset: 0x10 Access: Read/write

0 10 1 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N
N
w
N
o
o
~
o
©

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0 0 0 0 % 3 E
iC L @]

W wlc | wlc | wlc

Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39. Interrupt status register (CMU_ISR)

3

128/888 DoclD14629 Rev 9

RM0017 Clock Description
Table 52. CMU_ISR field descriptions
Field Description
FHHI FMPLL clock frequency higher than high reference interrupt.
This bit is set by hardware when feyp ¢k becomes higher than HFREF value and FMPLL_clk is
‘ON’ as signaled by the MC_ME. It can be cleared by software by writing ‘1’.
0 No FHH event.
1 FHH event is pending.
FLLI FMPLL clock frequency lower than low reference event.
This bit is set by hardware when feyp L ok becomes lower than LFREF value and FMPLL_clk is
‘ON'’ as signaled by the MC_ME. It can be cleared by software by writing ‘1’.
0 No FLL event.
1 FLL eventis pending.
OLRI Oscillator frequency lower than RC frequency event.
This bit is set by hardware when fexosc cik is lower than FIRC_clk/2R°PY frequency and FXOSC_clk
is ‘ON’ as signaled by the MC_ME. It can be cleared by software by writing ‘1’.
0 No OLR event.
1 OLR eventis pending.
6.8.5.6 Measurement Duration Register (CMU_MDR)
Offset: 0x18 Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0
MD[19:16]
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 28 29 30 31
R
MD[15:0]
w
Reset 0 0 0 o0]0 o0 o0 0[O0 O 0 0 0 0O 0 0
Figure 40. Measurement Duration Register (CMU_MDR)
Table 53. CMU_MDR field descriptions
Field Description
MD Measurement duration bits.

This field displays the measurement duration in numbers of clock cycles of the selected clock
source. This value is loaded in the frequency meter downcounter. When CMU_CSR[SFM] = 1, the
downcounter starts counting.

3

DoclD14629 Rev 9 129/888

Clock Generation Module (MC_CGM) RM0017

7 Clock Generation Module (MC_CGM)

7.1 Overview

The clock generation module (MC_CGM) generates reference clocks for all SoC blocks. The
MC_CGM selects one of the system clock sources to supply the system clock. The MC_ME
controls the system clock selection (see the MC_ME chapter for more details). A set of
MC_CGM registers controls the clock dividers which are utilized for divided system and
peripheral clock generation. The memory spaces of system and peripheral clock sources
which have addressable memory spaces, are accessed through the MC_CGM memory
space. The MC_CGM also selects and generates an output clock.

Figure 41 depicts the MC_CGM block diagram.

3

130/888 DoclD14629 Rev 9

RM0017 Clock Generation Module (MC_CGM)

MC_CGM

FIRC .
@—p MC_ME

FXOSC L

Registers

Platform Interface

@« | MC_RGM
FMPLL L

System Clock inheral
Multiplexer/Divider ——p-| PETIPNETAIS
——X] PAI0]
@§—P core
Output Clock

Selector/Divider

< > mapped

peripherals

Mapped Modules Interface

Figure 41. MC_CGM Block Diagram

3

DoclD14629 Rev 9 131/888

Clock Generation Module (MC_CGM)

RMO0017

7.2 Features
The MC_CGM includes the following features:
e generates system and peripheral clocks
e selects and enables/disables the system clock supply from system clock sources
according to MC_ME control
e contains a set of registers to control clock dividers for divided clock generation
e supports multiple clock sources and maps their address spaces to its memory map
e generates an output clock
e guarantees glitch-less clock transitions when changing the system clock selection
e supports 8-, 16- and 32-bit wide read/write accesses
7.3 Modes of Operation
This section describes the basic functional modes of the MC_CGM.
7.3.1 Normal and Reset Modes of Operation
During normal and reset modes of operation, the clock selection for the system clock is
controlled by the MC_ME.
7.4 External Signal Description
The MC_CGM delivers an output clock to the PA[O] pin for off-chip use and/or observation.
7.5 Memory Map and Register Definition
Table 54. MC_CGM Register Description
Access
Address Name Description Size Location
Supervisor
O0xC3FE_0370 | CGM_OC_EN Output Clock Enable word | read/write | on page 137
OxC3FE_0374 | CGM_OCDS_SC Output Clock Division Select byte | read/write | on page 137
OxC3FE_0378 | CGM_SC_SS System Clock Select Status byte read on page 138
OxC3FE_037C | CGM_SC_DCO0 System Clock Divider Configuration O | byte | read/write | on page 139
OxC3FE_037D [CGM_SC DC1 System Clock Divider Configuration 1 | byte | read/write | on page 139
OxC3FE_037E | CGM_SC_DC2 System Clock Divider Configuration 2 | byte | read/write | on page 139

Note:

132/888

not change register content

cause a transfer error

DoclD14629 Rev 9

Any access to unused registers as well as write accesses to read-only registers will:

3

RMO0017

Clock Generation Module (MC_CGM)

Table 55. MC_CGM Memory Map

Address

0 1 2 3 27 5 6 7 8 9 10 11 12 13 14
Name

15

16 17 18 19 20 21 22 23 | 24 | 25 26 27 28 29 | 30

31

OXC3FE
0000

OXC3FE
_001C

FXOSC registers

OXC3FE
0020

OXC3FE
003C

reserved

OXC3FE
0040

OXC3FE
_005C

SXOSC registers

OXC3FE
0060

OXC3FE
_007C

FIRC registers

OXC3FE
0080

OXC3FE
_009C

SIRC registers

OXC3FE
_00AO0

OXC3FE
_00BC

FMPLL registers

OXC3FE
00CO
OXC3FE
_00DC

reserved

OXC3FE
_00EO

OXC3FE
_00FC

reserved

OXC3FE
0100

OXC3FE
_o11c

CMU registers

S74

DoclD14629 Rev 9 133/888

Clock Generation Module (MC_CGM) RM0017

Table 55. MC_CGM Memory Map(Continued)

0 1 2 3 27| 5 6 7 8 9 |10 | 11| 12| 13|14 | 15
Address Name

16 17 18 19 20 21 22 23 | 24 | 25 26 27 28 29 | 30 31

OxC3FE
_ 0120
e reserved
OxC3FE
_013C

0xC3FE
~ 0140
. reserved
0xC3FE
_015C

OxC3FE
_0160
.. reserved
0xC3FE
_017C

OxC3FE
0180
e reserved
OxC3FE
_019C

0xC3FE
_01A0
. reserved
0xC3FE
_01BC

0xC3FE
_01co
.. reserved
0xC3FE
_01DC

OxC3FE
_01EO
e reserved
OxC3FE
_01FC

0xC3FE
_0200
.. reserved
0xC3FE
_021C

0xC3FE
_0220
.. reserved
0xC3FE
~023C

3

134/888 DoclD14629 Rev 9

RM0017 Clock Generation Module (MC_CGM)

Table 55. MC_CGM Memory Map(Continued)

ol 1|2 |3 |27| 5|6 | 7|8 | 9 |10]|11|12|13]|14]15
Address Name

16 17 18 19 20 21 22 23 | 24 | 25 26 27 28 29 | 30 31

OxC3FE
0240
reserved
OxC3FE
_025C

0xC3FE
0260
. reserved
0xC3FD
_c27C

OxC3FE
0280
reserved
0xC3FE
_029C

OxC3FE
_02A0
reserved
OxC3FE
_02BC

0xC3FE
_02co
reserved
0xC3FE
_02DC

0xC3FE
_02EO0
reserved
0xC3FE
_02FC

OxXC3FE
0300
reserved
OxC3FE
_031C

0xC3FE
0320
reserved
0xC3FE
_033C

0xC3FE
0340
reserved
0xC3FE
~035C

‘Yl DocID14629 Rev 9 135/888

Clock Generation Module (MC_CGM) RM0017

Table 55. MC_CGM Memory Map(Continued)

ol 1|2 |3 |27|5 |6 | 7|8 |9 |10]1|12|213]14]1s
Address Name
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31
OxC3FE
0360
reserved
OxC3FE
_036C
OxC3FE R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0370
- W
CGM_OC_EN
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN
W
OxC3FE R| O 0 0 0 0 0 0 0 0 0
0374 SELDIV SELCTL
cem ocps_ | W
SC R|lo|o|o|o|lo|lo|o|o|o|o|O|O|O|O|O]oO
W
OxC3FE R| O 0 0 0 SELSTAT 0 0 0 0 0 0 0 0
0378
- W
CGM_SC_SS
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
OxC3FE R| o 0 0 0 - 0 0 0
037C I T DIVO i DIV1
— W o o
caM sc e Rl |00 |0 ojlo|ojo|o|o|lo]|oO
0 2— — L w DIV2
W o
OxC3FE
0400
reserved
OxC3FE
_3FFC

7.5.1 Register Descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes
are ordered according to big endian. For example, the CGM_OC_EN register may be
accessed as a word at address OXC3FE_0370, as a half-word at address OXxC3FE_0372, or
as a byte at address OxC3FE_0373.

3

136/888 DoclD14629 Rev 9

RM0017 Clock Generation Module (MC_CGM)

751.1 Output Clock Enable Register (CGM_OC_EN)

Address OXC3FE_0370 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN
w
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 42. Output Clock Enable Register (CGM_OC_EN)
This register is used to enable and disable the output clock.
Table 56. Output Clock Enable Register (CGM_OC_EN) Field Descriptions
Field Description

EN Output Clock Enable control
0 Output Clock is disabled
1 Output Clock is enabled

75.1.2 Output Clock Division Select Register (CGM_OCDS_SC)

Address OXC3FE_0374 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0

W SELDIV SELCTL
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 43. Output Clock Division Select Register (CGM_OCDS_SC)

This register is used to select the current output clock source and by which factor it is divided
before being delivered at the output clock.

3

DoclD14629 Rev 9 137/888

Clock Generation Module (MC_CGM) RM0017

Table 57. Output Clock Division Select Register (CGM_OCDS_SC) Field Descriptions

Field Description

SELDIV | Output Clock Division Select

00 output selected Output Clock without division
01 output selected Output Clock divided by 2
10 output selected Output Clock divided by 4
11 output selected Output Clock divided by 8

SELCTL | Output Clock Source Selection Control — This value selects the current source for the output clock.

0000 4-16 MHz ext. xtal osc.
0001 16 MHz int. RC osc.
0010 freq. mod. PLL
0011 reserved

0100 reserved

0101 reserved

0110 reserved

0111 reserved

1000 reserved

1001 reserved

1010 reserved

1011 reserved

1100 reserved

1101 reserved

1110 reserved

1111 reserved

7.5.1.3 System Clock Select Status Register (CGM_SC_SS)

Address OXxC3FE_0378 Access: Supervisor read
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 SELSTAT 0 0 0 0 0 0 0 0
w [[]

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 44. System Clock Select Status Register (CGM_SC_SS)

This register provides the current clock source selection for the following clocks:
e undivided: system clock

e divided by system clock divider O: peripheral set 1 clock

e divided by system clock divider 1: peripheral set 2 clock

e divided by system clock divider 2: peripheral set 3 clock

See Figure 46 for details.

3

138/888 DoclD14629 Rev 9

RMO0017

Clock Generation Module (MC_CGM)

Table 58. System Clock Select Status Register (CGM_SC_SS) Field Descriptions

Field

Description

SELSTAT |System Clock Source Selection Status — This value indicates the current source for the system

clock.

0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.

0100 freq. mod. PLL

0101 reserved

0110 reserved

0111 reserved

1000 reserved

1001 reserved

1010 reserved

1011 reserved

1100 reserved

1101 reserved

1110 reserved

1111 system clock is disabled

7514 System Clock Divider Configuration Registers (CGM_SC_DCO0...2)
Address OXC3FE_037C Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0
DEO DIVO DE1 DIVl
\W
Reset 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DE2 DIV2

Reset

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 45. System Clock Divider Configuration Registers (CGM_SC_DCO0...2)

These registers control the system clock dividers.

Table 59. System Clock Divider Configuration Registers (CGM_SC_DCO...2) Field Descriptions

Field Description

DEO |Divider 0 Enable
0 Disable system clock divider O
1 Enable system clock divider 0

DIVO | Divider 0 Division Value — The resultant peripheral set 1 clock will have a period DIVO + 1 times that of
the system clock. If the DEO is set to ‘0’ (Divider 0 is disabled), any write access to the DIVO field is
ignored and the peripheral set 1 clock remains disabled.

DE1 Divider 1 Enable

0 Disable system clock divider 1
1 Enable system clock divider 1

3

DoclD14629 Rev 9 139/888

Clock Generation Module (MC_CGM) RM0017

Table 59. System Clock Divider Configuration Registers (CGM_SC_DCO...2) Field

Field Description
DIV1 | Divider 1 Division Value — The resultant peripheral set 2 clock will have a period DIV1 + 1 times that of
the system clock. If the DE1 is set to ‘0’ (Divider 1 is disabled), any write access to the DIV1 field is
ignored and the peripheral set 2 clock remains disabled.
DE2 Divider 2 Enable
0 Disable system clock divider 2
1 Enable system clock divider 2
DIV2 | Divider 2 Division Value — The resultant peripheral set 3 clock will have a period DIV2 + 1 times that of
the system clock. If the DE2 is set to ‘0’ (Divider 2 is disabled), any write access to the DIV2 field is
ignored and the peripheral set 3 clock remains disabled.
7.6 Functional Description
7.6.1 System Clock Generation
Figure 46 shows the block diagram of the system clock generation logic. The MC_ME
provides the system clock select and switch mask (see MC_ME chapter for more details),
and the MC_RGM provides the safe clock request (see MC_RGM chapter for more details).
The safe clock request forces the selector to select the 16 MHz int. RC osc. as the system
clock and to ignore the system clock select.
7.6.1.1 System Clock Source Selection
During normal operation, the system clock selection is controlled
e on a SAFE mode or reset event, by the MC_RGM
e otherwise, by the MC_ME
7.6.1.2 System Clock Disable
During normal operation, the system clock can be disabled by the MC_ME.
7.6.1.3 System Clock Dividers
The MC_CGM generates three derived clocks from the system clock.
7.6.1.4 Dividers Functional Description
Dividers are utilized for the generation of divided system and peripheral clocks. The
MC_CGM has the following control registers for built-in dividers:
e Section 7.5.1.4: System Clock Divider Configuration Registers (CGM_SC_DCO...2)
The reset value of all counters is ‘1'. If a divider has its DE bit in the respective configuration
register set to ‘0’ (the divider is disabled), any value in its DIVn field is ignored.
7.6.2 Output Clock Multiplexing
The MC_CGM contains a multiplexing function for a number of clock sources which can then
be utilized as output clock sources. The selection is done via the CGM_OCDS_SC register.
140/888 DocID14629 Rev 9 Kys

RMO0017

Clock Generation Module (MC_CGM)

16 MHz int. RC osc.

div. 16 MHz int. RC osc.
4-16 MHz ext. xtal osc. — .|
div. ext. xtal osc. —

freq. mod. PLL

PwNRFRo

MC_RGM safe clock request
MC_ME clock select ——

system clock is disabled if

ME_<current mode> MC.SYSCLK =*“1111"

CGM_SC_SS Register

» system clock

CGM_SC_DCO Register

clock divider

CGM_SC_DC1 Register

clock divider

CGM_SC_DC2 Register

clock divider

I » peripheral set 1 clock

I » peripheral set 2 clock

I » peripheral set 3 clock

Figure 46. MC_CGM System Clock Generation Overview

3

DoclD14629 Rev 9

141/888

Clock Generation Module (MC_CGM) RM0017

4-16 MHz ext. xtal osc. — 2|0 43<]7

16 MHz int. RCosc. — a1
freq. mod. PLL — a2

CGM_OC_EN Register

A 4

3
) 0

M PA[O]

A 4

L
0
LA

A 4

A 4

/L
CGM_OCDS_SCSSELDIV | |
CGM_OCDS_SC.SELCTL Register
Register

Figure 47. MC_CGM Output Clock Multiplexer and PA[0] Generation

7.6.3 Output Clock Division Selection

The MC_CGM provides the following output signals for the output clock generation:

e PAJO] (see Figure 47). This signal is generated by utilizing one of the 3-stage ripple
counter outputs or the selected signal without division. The non-divided signal is not
guaranteed to be 50% duty cycle by the MC_CGM.

e the MC_CGM also has an output clock enable register (see Section 7.5.1.1: Output
Clock Enable Register (CGM_OC_EN)) which contains the output clock enable/disable
control bit.

3

142/888 DoclD14629 Rev 9

RM0017 Mode Entry Module (MC_ME)

8 Mode Entry Module (MC_ME)
8.1 Introduction
8.1.1 Overview

The MC_ME controls the SoC mode and mode transition sequences in all functional states.
It also contains configuration, control and status registers accessible for the application.

Figure 48 depicts the MC_ME block diagram.

DoclD14629 Rev 9 143/888

3

Mode Entry Module (MC_ME)

RMO0017

VREG

Flashes

FIRC

FXOSC

FMPLL

144/888

MC_ME

Registers

Platform Interface

Device
Mode
State

Machine

MC_PCU

MC_RGM

MC_CGM

core

peripherals

WKPU

Figure 48. MC_MEBIlock Diagram

DoclD14629 Rev 9

3

RMO0017

Mode Entry Module (MC_ME)

8.1.2 Features
The MC_ME includes the following features:
e control of the available modes by the ME_ME register
e definition of various device mode configurations by the ME_<mode>_MC registers
e control of the actual device mode by the ME_MCTL register
e capture of the current mode and various resource status within the contents of the
ME_GS register
e optional generation of various mode transition interrupts
e status bits for each cause of invalid mode transitions
e peripheral clock gating control based on the ME_RUN_PCO...7, ME_LP_PCO...7, and
ME_PCTLO...143 registers
e capture of current peripheral clock gated/enabled status
8.1.3 Modes of Operation
The MC_ME is based on several device modes corresponding to different usage models of
the device. Each mode is configurable and can define a policy for energy and processing
power management to fit particular system requirements. An application can easily switch
from one mode to another depending on the current needs of the system. The operating
modes controlled by the MC_ME are divided into system and user modes. The system
modes are modes such as RESET, DRUN, SAFE, and TEST. These modes aim to ease the
configuration and monitoring of the system. The user modes are modes such as RUNO...3,
HALT, STOP, and STANDBY which can be configured to meet the application requirements
in terms of energy management and available processing power. The modes DRUN, SAFE,
TEST, and RUNO...3 are the device software running modes.
Table 60 describes the MC_ME modes.
Table 60. MC_ME Mode Descriptions
Name Description Entry Exit
This is a chip-wide virtual mode during which the system reset system reset
application is not active. The system remains in this mode |assertion from deassertion from
until all resources are available for the embedded software | MC_RGM MC_RGM
RESET .
to take control of the device. It manages hardware
initialization of chip configuration, voltage regulators,
oscillators, PLLs, and flash modules.
This is the entry mode for the embedded software. It system reset system reset
provides full accessibility to the system and enables the deassertion from | assertion,
configuration of the system at startup. It provides the MC_RGM, RUNO...3, TEST,
DRUN unique gate to enter USER modes. BAM when present is | software request | STANDBY via
executed in DRUN mode. from SAFE, TEST SOftWare, SAFE via
and RUNO...3, software or
wakeup request hardware failure.
from STANDBY
This is a chip-wide service mode which may be entered on | hardware failure, system reset
SAFE the detection of a recoverable error. It forces the system software request | assertion, DRUN

into a pre-defined safe configuration from which the system
may try to recover.

from DRUN, TEST,
and RUNO...3

via software

3

DoclD14629 Rev 9

145/888

Mode Entry Module (MC_ME) RM0017
Table 60. MC_ME Mode Descriptions(Continued)
Name Description Entry Exit
This is a chip-wide service mode which is intended to
. - . system reset
provide a control environment for device self-test. It may software request .
TEST o . . assertion, DRUN
enable the application to run its own self-test like flash from DRUN :
via software
checksum, memory BIST etc.
These are software running modes where most processing system reset
T h software request :
activity is done. These various run modes allow to enable assertion, SAFE
. ' . . from DRUN, :
different clock & power configurations of the system with . via software or
interrupt event .
respect to each other. hardware failure,
RUNO...3 from HALT,
interrunt or other RUNO...3
Wakeup event from modes, HALT,
P STOP, STANDBY
STOP .
via software
This is a reduced-activity low-power mode during which the system reset
clock to the core is disabled. It can be configured to switch software request assertion, SAFE
HALT off analog peripherals like PLL, flash, main regulator etc. for from RUNOq 3 on hardware
efficient power management at the cost of higher wakeup failure, RUNO...3
latency. on interrupt event
This is an advanced low-power mode during which the system reset
clock to the core is disabled. It may be configured to switch assertion, SAFE
STOP off most of the peripherals including oscillator for efficient | software request | on hardware
power management at the cost of higher wakeup latency. | from RUNO...3 failure, RUNO...3
on interrupt event
or wakeup event
This is a reduced-leakage low-power mode during which
ower supply is cut off from most of the device. Wakeup software request | system reset
STANDBY P . . - : . from RUNO...3, assertion, DRUN
from this mode takes a relatively long time, and content is
DRUN modes on wakeup event
lost or must be restored from backup.
8.2 External Signal Description
The MC_ME has no connections to any external pins.
8.3 Memory Map and Register Definition
The MC_ME contains registers for:
e mode selection and status reporting
e mode configuration
e mode transition interrupts status and mask control
e scalable number of peripheral sub-mode selection and status reporting
Table 61. MC_ME Register Description
Access
Address Name Description Size Location
Supervisor
0xC3FD_CO000 |ME_GS Global Status word read on page 154
0xC3FD_C004 | ME_MCTL Mode Control word | read/write | on page 156

146/888

DoclD14629 Rev 9

S74

RM0017 Mode Entry Module (MC_ME)
Table 61. MC_ME Register Description(Continued)
Access _
Address Name Description Size Location
Supervisor
0xC3FD_C008 | ME_ME Mode Enable word | read/write | on page 157
O0xC3FD_CO00C |ME_IS Interrupt Status word | read/write | on page 159
0xC3FD_CO010 | ME_IM Interrupt Mask word | read/write | on page 160
0xC3FD_C014 | ME_IMTS Invalid Mode Transition Status word | read/write | on page 161
0xC3FD_C018 | ME_DMTS Debug Mode Transtion Status word read on page 162
0xC3FD_C020 | ME_RESET_MC RESET Mode Configuration word read on page 164
0xC3FD_C024 | ME_TEST_MC TEST Mode Configuration word | read/write | on page 165
0xC3FD_C028 | ME_SAFE_MC SAFE Mode Configuration word | read/write | on page 165
0xC3FD_C02C | ME_DRUN_MC DRUN Mode Configuration word | read/write | on page 166
0xC3FD_C030 | ME_RUNO_MC RUNO Mode Configuration word | read/write | on page 166
0xC3FD_C034 | ME_RUN1_MC RUN21 Mode Configuration word | read/write | on page 166
OxC3FD_C038 | ME_RUN2_MC RUN2 Mode Configuration word | read/write | on page 166
0xC3FD_CO03C | ME_RUN3_MC RUN3 Mode Configuration word | read/write | on page 166
OxC3FD_C040 | ME_HALT_MC HALT Mode Configuration word | read/write | on page 167
O0xC3FD_C048 | ME_STOP_MC STOP Mode Configuration word | read/write | on page 167
OxC3FD_CO054 | ME_STANDBY_MC | STANDBY Mode Configuration word | read/write | on page 168
0xC3FD_CO060 | ME_PSO Peripheral Status 0 word read on page 170
OxC3FD_C064 | ME_PS1 Peripheral Status 1 word read on page 170
OxC3FD_C068 | ME_PS2 Peripheral Status 2 word read on page 171
0xC3FD_CO06C | ME_PS3 Peripheral Status 3 word read on page 171
0xC3FD_C080 | ME_RUN_PCO Run Peripheral Configuration 0 word | read/write | on page 172
OxC3FD_C084 | ME_RUN_PC1 Run Peripheral Configuration 1 word | read/write | on page 172
0xC3FD_C09C | ME_RUN_PC7 Run Peripheral Configuration 7 word | read/write | on page 172
0xC3FD_CO0AO ME_LP_PCO gow-Power Peripheral Configuration | word | read/write | on page 173
OxC3FD_CO0A4 ME_LP_PC1 Iiow-Power Peripheral Configuration | word | read/write | on page 173
O0xC3FD_CO0BC ME_LP_PC7 ;ow-Power Peripheral Configuration | word | read/write | on page 173
O0xC3FD_C0C4 | ME_PCTL4 DSPIO0 Control byte | read/write | on page 173
0xC3FD_CO0C5 | ME_PCTL5 DSPI1 Control byte | read/write | on page 173
O0xC3FD_CO0C6 | ME_PCTL6 DSPI2 Control byte | read/write | on page 173
0xC3FD_CO0DO | ME_PCTL16 FlexCANO Control byte | read/write | on page 173
"_l DoclD14629 Rev 9 147/888

Mode Entry Module (MC_ME) RM0017
Table 61. MC_ME Register Description(Continued)
Access _
Address Name Description Size Location
Supervisor

0xC3FD_CO0D1 | ME_PCTL17 FlexCAN1 Control byte | read/write | on page 173
O0xC3FD_CO0D2 | ME_PCTL18 FlexCAN2 Control byte | read/write | on page 173
O0xC3FD_CO0D3 | ME_PCTL19 FlexCAN3 Control byte | read/write | on page 173
O0xC3FD_CO0D4 | ME_PCTL20 FlexCAN4 Control byte | read/write | on page 173
O0xC3FD_CO0D5 | ME_PCTL21 FlexCAN5 Control byte | read/write | on page 173
OxC3FD_COEO | ME_PCTL32 ADCO Control byte | read/write | on page 173
O0xC3FD_COEC | ME_PCTL44 12C0 Control byte | read/write | on page 173
OxC3FD_COF0 | ME_PCTL48 LINFlex0 Control byte | read/write | on page 173
OxC3FD_COF1 | ME_PCTL49 LINFlex1 Control byte | read/write | on page 173
O0xC3FD_COF2 | ME_PCTL50 LINFlex2 Control byte | read/write | on page 173
O0xC3FD_COF3 | ME_PCTL51 LINFlex3 Control byte | read/write | on page 173
OxC3FD_COF9 | ME_PCTL57 CTU Control byte | read/write | on page 173
O0xC3FD_COFC | ME_PCTL60 CANSampler Control byte | read/write | on page 173
0xC3FD_C104 | ME_PCTL68 SIUL Control byte | read/write | on page 173
OxC3FD_C105 | ME_PCTL69 WKPU Control byte | read/write | on page 173
OxC3FD_C108 | ME_PCTL72 eMIOSO0 Control byte | read/write | on page 173
O0xC3FD_C109 |ME_PCTL73 eMIOS1 Control byte | read/write | on page 173
OxC3FD_C11B |ME_PCTL91 RTC_API Control byte | read/write | on page 173
OxC3FD_C11C | ME_PCTL92 PIT_RTI Control byte | read/write | on page 173
O0xC3FD_C128 | ME_PCTL104 CMU Control byte | read/write | on page 173

Note: Any access to unused registers as well as write accesses to read-only registers will:

148/888

not change register content

cause a transfer error

DoclD14629 Rev 9

3

RM0017 Mode Entry Module (MC_ME)

Table 62. MC_ME Memory Map

0 1 2 3

N
~

5 6 7 8 9 | 10 11 12 13 14 15

Address Name
16 | 17 | 18 | 19 |20 |21 |22 |23 |24 | 25| 26| 27 | 28 | 29 | 30 | 31
OxC3FD | ME_GS (£
o o
_C000 =S e) 9 <
R | S_CURRENT_MODE P_: DI o|o|g|0]O s S DFLA S CFLA
s |n (/)l (/')I
7
w
z 3|8
R s |12 S_SYSCLK
N [
ol @
w
O0xC3FD | ME_MCTL R 0|]0|]0|0|0O0]0O0]O0 0 0 0 0 0
C004 —— TARGET_MODE
- w
R 1 0 1 0 0|10 1|0]0]O0 0 1 1 1 1
w KEY
0xC3FD | ME_ME R| O 0 0 0 0|]0|]0|0|0O0]0O0]O 0 0 0 0 0
C008
- w
% 23 | ¢ m
A e R = N B B R e O = =T I - I
Z = <|35|5|5|x |0 |9V |0 |
s n T | |x|x =
w)]
O0xC3FD | ME_IS R| O 0 0 0 0|]0|]0|0|0O0]0O0]O0 0 0 0 0 0
cooC
- w
w
AEAERE
R| O 0 0 0 ojojo|lO0O|]0O0O|O0O]O 0 3] s %I El
I T Y L
W wlc |wlc |wlc |wlc
OxC3FD | ME_IM R| O 0 0 0 o(fojo|lO0O|O0O|0O]O 0 0 0 0 0
C010
- w
1]
R| O 0 0 0 o(fojo|lO0O|0O0O|O]O 0 % a ELJ O
(@) @) < =
C |2 |v | =
S | = |2
O0xC3FD | ME_IMTS R| O 0 0 0 o(ojo|lO0O|]O0O|O]O 0 0 0 0 0
C014
- w
— = < < <
E | x
Rl o] oo oooooooozlzlggﬁ
ol l|lele !l
W wlc |wlc |wlc |wlc |wlc
‘Yl DoclD14629 Rev 9 149/888

Mode Entry Module (MC_ME) RM0017

Table 62. MC_ME Memory Map(Continued)

0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15
Address Name
16 17 18 19 20 | 21 | 22 | 23 |24 | 25| 26 27 28 29 30 31
0xC3FD | ME_DMTS > 9l
_Co18 > ¥ | o o
Rlojo|o|o|oflojofo|®|ofo|la |]|0]|O0]S
I (@) [h4 n
o S | O
= o O
W
N~
z|o o § S'l 8' 8' gl
213 | o alo|a|o e 3|8 |9
| BE 9) <! I e U
Rl o |38 |o S|ln|n|z|o0]|o0 |z |z |8
T |0 | O |<|< | r | ¢ | | &
= x [Y i i o o o o |
L i > | | | | a
nh |00 |a a o o a
a a8 lal|§g
O glo|o
W
OXC3FD reserved
_co1C
0xC3FD | ME_RESET_ o z
€020 |MC R/l o|lo|o|o|o|lo|lo|o|lal|o]|oO g DFLAON | CFLAON
o
s
W
vl Z
o |0 %
R 4180 SYSCLK
% O | x
x| u
W
0xC3FD |ME_TEST_M 3
_C024 |C RIolo|]o|o0o|o|o|O|O|g|O0O|0]C&
a 2 | DFLAON | CFLAON
o
W
vl zZ
Rl o|ojojojoflojojofo(Z|Z z
2180 SYSCLK
w % O | x
TR |yw
0xC3FD | ME_SAFE_M 3
_Co28 |C RIoO|o| 0| O0|0|l0O|[O0O|O|g|O]|O|& |DFLAON | CFLAON
D >
Q s
W
zZ pd
) 8 %
R Jlal O SYSCLK
Lok
TR |yw
W

150/888 DoclD14629 Rev 9 ‘Yl

RM0017 Mode Entry Module (MC_ME)
Table 62. MC_ME Memory Map(Continued)
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15
Address Name
16 17 18 19 20 | 21 | 22 | 23 |24 | 25| 26 27 28 29 30 31
OXC3FD | ME_DRUN_M o %
_co2C |C o|lo|lo|oOo|o|o|Oo|lOoO|Aa|O|O]| &
o § DFLAON | CFLAON
zlz|8
ojojojof|oflolo|lo|lo0|9|8|O
dlgp | & SYSCLK
S|t
T|x
0XC3FD | ME_RUNO...3 o %
_C030 |_MC ol o|lo|o|o|lojo|lo|Aa|lO|O| &
o § DFLAON | CFLAON
0xC3FD
_Co3C
z|z| &
olojojo|ojojof0o|l0|9|8]|C
Ol | & SYSCLK
Siolt
il
OXC3FD | ME_HALT M olololololololo 8 ol o %
_C040 |C o o>: DFLAON | CFLAON
s
Z |2
o/l o|o|o|o|o|o|loOo]|oO Z |3 %
2180 SYSCLK
% o |
TR "
OXC3FD reserved
_C044
OXC3FD | ME_STOP_M o|lo|o|]o|o|o|o|oO o 0|0 g
_Co048 |C a c DFLAON | CFLAON
o
s
Z
Slz| 5
oooooooooaugo SYSCLK
S 8 %
L X
L
OXC3FD
_Co4c
reserved
0xC3FD
_C050
‘Yl DoclD14629 Rev 9 151/888

Mode Entry Module (MC_ME)

RMO0017

Table 62. MC_ME Memory Map(Continued)

Address

Name

0

1

2

3

27

5

6

7

9

10

12

13

14

15

16

17

18

19

20

21

22

23

25

26

28

29

30

31

OXC3FD
_C054

ME_STANDB
Y_MC

PDO

MVRON

DFLAON

CF

LAON

FMPLLON

FXOSCON

FIRCON

SYSCLK

OXC3FD
_C058

OXC3FD
_CO05C

reserved

OXC3FD
_C060

ME_PS0

S_FlexCANS

S_FlexCAN4

S_FlexCAN3

S_FlexCAN2

S_FlexCAN1

S_FlexCANO

S_DSPI2

S_DSPI1

S_DSPIO

OXC3FD
_Co064

ME_PS1

pler

S_CANSam

S CTU

S_LINFlex3

S_LINFlex2

S_LINFlex1

S_LINFlex0

S_I2C0

S_ADCO

152/888

DoclD14629 Rev 9

3

RM0017 Mode Entry Module (MC_ME)
Table 62. MC_ME Memory Map(Continued)
o | 1| 2| 3 |27|5|6|7|8|9|10] 11|12 13| 14| 15
Address Name
16 | 17 | 18 | 19 [20| 21|22 |23 |24 |25 |26 | 27 | 28 | 29 | 30 | 31
OxC3FD | ME_PS2 E o
Co68 . @ 3
|_
o e
0 |y
W
o |3 D
o0 g2
R s |S = | ®
cul cul | U)l
n|n n
W
OxC3FD | ME_PS3 R
Cco6C
- W
)
R 3
o
W
OXC3FD reserved
_C070
0xC3FD
_C074
reserved
OxC3FD
_co7C
OxC3FD [ME_RUN_PC |R| O 0 0 0 ofojo|l0o0j0O0|0O0]O 0 0 0 0 0
€080 |0...7
W
OxC3FD E
_CcooC Rl o|]O]|]O]|]O]|]O|]O|]O|O|lo|ln|o|lo | Z |w || o
Z|2|Z2|Z2 |5 |k |wn|Ww
S|I2|I2|D | | < | W |x
x|lx|lx|lx | |0 |F
W
OxC3FD [ME_LP _PCO |R| O 0 0 0 ofojo|l0O0Oj0O0|0O0]O 0 0 0 0 0
_COAO |...7
W
OxC3FD Rlo|lo|%|o|o| |o|] |ojojlojo|O]|oO]oO]|oO
_COBC a g -
z = <
W |<I~ 0 T
)
Kyy DoclD14629 Rev 9 153/888

Mode Entry Module (MC_ME)

RMO0017

Table 62. MC_ME Memory Map(Continued)

0 1 2 3 27 | 5 6 7 8 9 10 11 12 13 14 15
Address Name
16 17 18 19 20 [21 | 22 | 23 |24 | 25| 26 27 28 29 30 31
OxC3FD |ME_PCTLO... |R| O “-| 0 '-'-|
_Ccoco |143 @ LP_CFG RUN_CFG Q LP_CFG RUN_CFG
W a o
OxC3FD R 0 l_I_I 0 LLI
_Cl14C 0} LP_CFG RUN_CFG 0} LP_CFG RUN_CFG
W m - - m - -
fa) a)
0xC3FD
_C150
reserved
O0xC3FD
_FFFC
8.3.1 Register Description
Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or
8-bit bytes. The bytes are ordered according to big endian. For example, the ME_RUN_PCO
register may be accessed as a word at address OxC3FD_CO080, as a half-word at address
OxC3FD_C082, or as a byte at address OxC3FD_CO083.
8.3.1.1 Global Status Register (ME_GS)
Address OxC3FD_C000 Access: Supervisor read
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R [0}
2| o Q S
) >
S _CURRENT_MODE P_f DI 0 0 a 0 0 = S DFLA S CFLA
s) (/')I (/')I
o
wl [[|
Reset O 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 213 | o
o @) x
s < T S_SYSCLK
LLI |_|_I |
w | o |?
w [[|
Reset O 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 49. Global Status Register (ME_GS)

This register contains global mode status.

154/888

DoclD14629 Rev 9

3

RMO0017

Mode Entry Module (MC_ME)

Table 63. Global Status Register (ME_GS) Field Descriptions

Field

Description

S_CURREN
T_MODE

Current device mode status

0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUNO
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

S_MTRANS

Mode transition status

0 Mode transition process is not active
1 Mode transition is ongoing

Device current consumption status

0 Device consumption is low enough to allow powering down of main voltage regulator

1 Device consumption requires main voltage regulator to remain powered regardless of mode
configuration

S_PDO

Output power-down status — This bit specifies output power-down status of I/Os. This bit is

asserted whenever outputs of pads are forced to high impedance state or the pads power sequence

driver is switched off.

0 No automatic safe gating of 1/0Os used and pads power sequence driver is enabled

1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and pads power
sequence driver is disabled. The inputs are level unchanged. In STOP mode, only pad power
sequence driver is disabled but the state of the output is kept. In STANDBY mode, the power
sequence driver and all pads except those mapped on wakeup lines are not powered and
therefore high impedance. Wakeup lines configuration remains unchanged

S_MVR

Main voltage regulator status

0 Main voltage regulator is not ready
1 Main voltage regulator is ready for use

S_DFLA

Data flash availability status

00 Data flash is not available

01 Data flash is in power-down mode

10 Data flash is in low-power mode

11 Data flash is in normal mode and available for use

S_CFLA

Code flash availability status

00 Code flash is not available

01 Code flash is in power-down mode

10 Code flash is in low-power mode

11 Code flash is in normal mode and available for use

3

DoclD14629 Rev 9 155/888

Mode Entry Module (MC_ME) RM0017

Table 63. Global Status Register (ME_GS) Field Descriptions(Continued)

Field Description

S _FMPLL |frequency modulated phase locked loop status

0 frequency modulated phase locked loop is not stable
1 frequency modulated phase locked loop is providing a stable clock

S _FXOSC |fast external crystal oscillator (4-16 MHz) status

0 fast external crystal oscillator (4-16 MHz) is not stable
1 fast external crystal oscillator (4-16 MHz) is providing a stable clock

S _FIRC fast internal RC oscillator (16 MHz) status

0 fastinternal RC oscillator (16 MHz) is not stable
1 fast internal RC oscillator (16 MHz) is providing a stable clock

S_SYSCLK | System clock switch status — These bits specify the system clock currently used by the system.
0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.

0100 freq. mod. PLL

0101 reserved

0110 reserved

0111 reserved

1000 reserved

1001 reserved

1010 reserved

1011 reserved

1100 reserved

1101 reserved

1110 reserved

1111 system clock is disabled

8.3.1.2 Mode Control Register (ME_MCTL)

Address OxC3FD_C004 Access: Supervisor read/write

0 1 2 3 4 5 10 1 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0

o
~
[ee]
©

TARGET_MODE

Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reset 1 0 1 o0]0 1 o 1/0 o0 o0 o011 1 1 1
Figure 50. Mode Control Register (ME_MCTL)
This register is used to trigger software-controlled mode changes. Depending on the modes
as enabled by ME_ME register bits, configurations corresponding to unavailable modes are

reserved and access to ME_<mode>_MC registers must respect this for successful mode
requests.

156/888 DoclD14629 Rev 9 ‘Yl

RM0017 Mode Entry Module (MC_ME)

Note: Byte and half-word write accesses are not allowed for this register as a predefined key is
required to change its value.

Table 64. Mode Control Register (ME_MCTL) Field Descriptions

Field Description

TARGET_M | Target device mode — These bits provide the target device mode to be entered by software

ODE programming. The mechanism to enter into any mode by software requires the write operation
twice: first time with key, and second time with inverted key. These bits are automatically updated by
hardware while entering SAFE on hardware request. Also, while exiting from the HALT and STOP
modes on hardware exit events, these are updated with the appropriate RUNO...3 mode value.

0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUNO
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

KEY Control key — These bits enable write access to this register. Any write access to the
register with a value different from the keys is ignored. Read access will always return
inverted key.

KEY: 0101101011110000 (Ox5AFO0)

INVERTED KEY: 1010010100001111 (OxA50F)

8.3.1.3 Mode Enable Register (ME_ME)

Address OxC3FD_C008 Access: Supervisor read/write

o
~
o
©

0 1 2 3 4 5 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

w
Reset O 0

o
o
o
o
o
o
o
o
o
o
o
o
o
o

16 17 18 19 | 20 21 22 23 | 24 25 26 27 | 28 29 30 31
R > o z w =
m z 35 L u
ojlojg |0 o0 | 10 512 2 |1Z 5|z |<|m |9
z = < =) D D o &) w L o

= 7 I |z |2 | @ —

W ()]

Reset O 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 51. Mode Enable Register (ME_ME)

This register allows a way to disable the device modes which are not required for a given
device. RESET, SAFE, DRUN, and RUNO modes are always enabled.

3

DoclD14629 Rev 9 157/888

Mode Entry Module (MC_ME)

RMO0017

Table 65. Mode Enable Register (ME_ME) Field Descriptions

Field

Description

STANDBY

STANDBY mode enable

0 STANDBY mode is disabled
1 STANDBY mode is enabled

STOP

STOP mode enable

0 STOP mode is disabled
1 STOP mode is enabled

HALT

HALT mode enable

0 HALT mode is disabled
1 HALT mode is enabled

RUN3

RUNS3 mode enable

0 RUN3 mode is disabled
1 RUNS3 mode is enabled

RUN2

RUN2 mode enable

0 RUN2 mode is disabled
1 RUN2 mode is enabled

RUN1

RUN1 mode enable

0 RUNI1 mode is disabled
1 RUNI1 mode is enabled

RUNO

RUNO mode enable

0 RUNO mode is disabled
1 RUNO mode is enabled

DRUN

DRUN mode enable

0 DRUN mode is disabled
1 DRUN mode is enabled

SAFE

SAFE mode enable

0 SAFE mode is disabled
1 SAFE mode is enabled

TEST

TEST mode enable

0 TEST mode is disabled
1 TEST mode is enabled

RESET

RESET mode enable

0 RESET mode is disabled
1 RESET mode is enabled

158/888

DoclD14629 Rev 9

3

RM0017 Mode Entry Module (MC_ME)
8.3.1.4 Interrupt Status Register (ME_IS)
Address OXxC3FD_C00C Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
L
’ AL
0 0 0 0 0 0 0 0 0 0 0 0 3] s §’| El
_l —l - -
w wlc | wic | wlc | wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 52. Interrupt Status Register (ME_IS)
This register provides the current interrupt status.
Table 66. Interrupt Status Register (ME_IS) Field Descriptions
Field Description
I_ICONF |Invalid mode configuration interrupt — This bit is set whenever a write operation to
ME_<mode>_MC registers with invalid mode configuration is attempted. It is cleared by writing a ‘1’
to this bit.
0 No invalid mode configuration interrupt occurred
1 Invalid mode configuration interrupt is pending
I_IMODE |Invalid mode interrupt — This bit is set whenever an invalid mode transition is requested. It is
cleared by writing a ‘1’ to this bit.
0 No invalid mode interrupt occurred
1 Invalid mode interrupt is pending
|_SAFE SAFE mode interrupt — This bit is set whenever the device enters SAFE mode on hardware
requests generated in the system. It is cleared by writing a ‘1’ to this bit.
0 No SAFE mode interrupt occurred
1 SAFE mode interrupt is pending
I_MTC Mode transition complete interrupt — This bit is set whenever the mode transition process
completes (S_MTRANS transits from 1 to 0). It is cleared by writing a ‘1’ to this bit. This mode
transition interrupt bit will not be set while entering low-power modes HALT, STOP, or STANDBY.
0 No mode transition complete interrupt occurred
1 Mode transition complete interrupt is pending

3

DoclD14629 Rev 9 159/888

Mode Entry Module (MC_ME)

RMO0017

8.3.1.5

Interrupt Mask Register (ME_IM)

Address OxC3FD_C010

Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0 % '(-'%J n |9
|
s || = |3
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 53. Interrupt Mask Register (ME_IM)
This register controls whether an event generates an interrupt or not.
Table 67. Interrupt Mask Register (ME_IM) Field Descriptions
Field Description
M_ICONF | Invalid mode configuration interrupt mask
0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled
M_IMODE | Invalid mode interrupt mask
0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled
M_SAFE | SAFE mode interrupt mask
0 SAFE mode interrupt is masked
1 SAFE mode interrupt is enabled
M_MTC Mode transition complete interrupt mask
0 Mode transition complete interrupt is masked
1 Mode transition complete interrupt is enabled

160/888

DoclD14629 Rev 9

3

RM0017 Mode Entry Module (MC_ME)

8.3.1.6 Invalid Mode Transition Status Register (ME_IMTS)

Address OxC3FD_C014 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R Elz |55
olo|ofo|ofo|o|o|o|o|o|Z|35 |32 |8
0 " 0 0 "
W wlc | wlc | wlc | wlc | wlc
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 54. Invalid Mode Transition Status Register (ME_IMTS)
This register provides the status bits for each cause of invalid mode interrupt.
Table 68. Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions
Field Description
S_MTI Mode Transition lllegal status — This bit is set whenever a new mode is requested while some
other mode transition process is active (S_MTRANS is ‘1’). Please refer to Section 8.4.5: Mode
Transition Interrupts for the exceptions to this behavior. It is cleared by writing a ‘1’ to this bit.
0 Mode transition requested is not illegal
1 Mode transition requested is illegal
S_MRI Mode Request lllegal status — This bit is set whenever the target mode requested is not a valid
mode with respect to current mode. It is cleared by writing a ‘1’ to this bit.
0 Target mode requested is not illegal with respect to current mode
1 Target mode requested is illegal with respect to current mode
S _DMA Disabled Mode Access status — This bit is set whenever the target mode requested is one of
those disabled modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.
0 Target mode requested is not a disabled mode
1 Target mode requested is a disabled mode
S NMA Non-existing Mode Access status — This bit is set whenever the target mode requested is one of
those non existing modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.
0 Target mode requested is an existing mode
1 Target mode requested is a non-existing mode
S _SEA SAFE Event Active status — This bit is set whenever the device is in SAFE mode, SAFE event bit is
pending and a new mode requested other than RESET/SAFE modes. It is cleared by writing a ‘1’ to
this bit.
0 No new mode requested other than RESET/SAFE while SAFE event is pending
1 New mode requested other than RESET/SAFE while SAFE event is pending

3

DoclD14629 Rev 9 161/888

Mode Entry Module (MC_ME) RM0017

8.3.1.7 Debug Mode Transition Status Register (ME_DMTS)

Address OxC3FD_C018 Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R ; B
2 © o x
o|ofo|oOo|oO0O]O0O|O]|]O |® o0 ||y |]O0]o0]|Ss
T @) x 0
o = o}
= o O
w

o
o
o
o
o
o
o
o

Reset 0 0 0 0 0 0 0 0

N
[ee]
N
©
w
o
w
iy

16 17 18 19 20

N
[
N
N
N
w
N
i

25 26 27

N~

R Q S [8|3 | ¢
0 = o o | 0 <] o I
| | n T | T T I
0 - 8 0 0 X % (]/:) o 0 0 0 T o o &
L |8 | O | < | < |« g | | | &
s ™ T %) T 7 a a o a |
T | X > | | | I A
0 [a) O o a o o a
a s | a8a]|al§

O o | O | O

W

Reset 0 O O O |0 O O O ,0 O O o0]o o o0 o

Figure 55. Debug Mode Transition Status Register (ME_DMTS)

This register provides the status of different factors which influence mode transitions. It is
used to give an indication of why a mode transition indicated by ME_GS.S_MTRANS may be
taking longer than expected.

Note: The ME_DMTS register does not indicate whether a mode transition is ongoing. Therefore,
some ME_DMTS bits may still be asserted after the mode transition has completed.

Table 69. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions

Field Description

MPH_BUSY | MC_ME/MC_PCU Handshake Busy indicator — This bit is set if the MC_ME has requested a mode
change from the MC_PCU and the MC_PCU has not yet responded. It is cleared when the
MC_PCU has responded.

0 Handshake is not busy

1 Handshake is busy

PMC_PROG | MC_PCU Mode Change in Progress indicator — This bit is set if the MC_PCU is in the process of
powering up or down power domains. It is cleared when all power-up/down processes have
completed.

0 Power-up/down transition is not in progress

1 Power-up/down transition is in progress

CORE_DBG | Processor is in Debug mode indicator — This bit is set while the processor is in debug mode.

0 The processor is not in debug mode
1 The processor is in debug mode

3

162/888 DoclD14629 Rev 9

RMO0017

Mode Entry Module (MC_ME)

Table 69. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions(Continued)

Field Description
SMR SAFE mode request from MC_RGM is active indicator — This bit is set if a hardware SAFE mode
request has been triggered. It is cleared when the hardware SAFE mode request has been cleared.
0 A SAFE mode request is not active
1 A SAFE mode request is active
FMPLL_SC |FMPLL State Change during mode transition indicator — This bit is set when the frequency
modulated phase locked loop is requested to change its power up/down state. It is cleared when the
frequency modulated phase locked loop has completed its state change.
0 No state change is taking place
1 A state change is taking place
FXOSC_SC | FXOSC State Change during mode transition indicator — This bit is set when the fast external
crystal oscillator (4-16 MHz) is requested to change its power up/down state. It is cleared when the
fast external crystal oscillator (4-16 MHz) has completed its state change.
0 No state change is taking place
1 A state change is taking place
FIRC_SC |FIRC State Change during mode transition indicator — This bit is set when the fast internal RC
oscillator (16 MHz) is requested to change its power up/down state. It is cleared when the fast
internal RC oscillator (16 MHz) has completed its state change.
0 No state change is taking place
1 A state change is taking place
SYSCLK_S | System Clock Switching pending status —
w 0 No system clock source switching is pending
1 A system clock source switching is pending
DFLASH_SC | DFLASH State Change during mode transition indicator — This bit is set when the DFLASH is
requested to change its power up/down state. It is cleared when the DFLASH has completed its
state change.
0 No state change is taking place
1 A state change is taking place
CFLASH_SC | CFLASH State Change during mode transition indicator — This bit is set when the CFLASH is
requested to change its power up/down state. It is cleared when the DFLASH has completed its
state change.
0 No state change is taking place
1 A state change is taking place
CDP_PRPH | Clock Disable Process Pending status for Peripherals 0...143 — This bit is set when any peripheral
_0_143 has been requested to have its clock disabled. It is cleared when all the peripherals which have
been requested to have their clocks disabled have entered the state in which their clocks may be
disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral
CDP_PRPH | Clock Disable Process Pending status for Peripherals 96...127 — This bit is set when any
_96_127 |peripheral appearing in ME_PS3 has been requested to have its clock disabled. It is cleared when

all these peripherals which have been requested to have their clocks disabled have entered the
state in which their clocks may be disabled.

0 No peripheral clock disabling is pending

1 Clock disabling is pending for at least one peripheral

3

DoclD14629 Rev 9 163/888

Mode Entry Module (MC_ME)

RMO0017

Table 69. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions(Continued)
Field Description
CDP_PRPH | Clock Disable Process Pending status for Peripherals 64...95 — This bit is set when any peripheral
_64 95 appearing in ME_PS2 has been requested to have its clock disabled. It is cleared when all these
peripherals which have been requested to have their clocks disabled have entered the state in
which their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral
CDP_PRPH | Clock Disable Process Pending status for Peripherals 32...63 — This bit is set when any peripheral
32 63 appearing in ME_PS1 has been requested to have its clock disabled. It is cleared when all these
peripherals which have been requested to have their clocks disabled have entered the state in
which their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral
CDP_PRPH | Clock Disable Process Pending status for Peripherals 0...31 — This bit is set when any peripheral
031 appearing in ME_PSO0 has been requested to have its clock disabled. It is cleared when all these
peripherals which have been requested to have their clocks disabled have entered the state in
which their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral
8.3.1.8 RESET Mode Configuration Register (ME_RESET_MC)

Address 0xC3FD_C020

Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 5
0 0 0 0 0 0 0 0 [(PDO| O 0 % DFLAON CFLAON
s
W
Reset O 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
zZ =z
) 5|53
0 0 0 0 0 0 0 0 0 7 8 8 SYSCLK
: | &=
w [[|
Reset O 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Figure 56. Invalid Mode Transition Status Register (ME_IMTS)
This register configures system behavior during RESET mode. Please refer to Table 70 for
details.
164/888 DoclD14629 Rev 9 Kys

RM0017 Mode Entry Module (MC_ME)
8.3.1.9 TEST Mode Configuration Register (ME_TEST_MC)
Address OxC3FD_C024 Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R z
@)
0 0 0 0 0 0 0 0 0 0 x
PDO § DFLAON CFLAON
\W
Reset O 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
z
R| O 0 0 0 0 0 0 0 0 % 8 %
W 3o | O SYSCLK
% o @
z |2 |E
Reset O 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Figure 57. TEST Mode Configuration Register (ME_TEST_MC)
This register configures system behavior during TEST mode. Please refer to Table 70 for
details.
Note: Byte and half-word write accesses are not allowed to this register.
8.3.1.10 SAFE Mode Configuration Register (ME_SAFE_MC)
Address OxC3FD_C028 Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
) 5
0 0 0 0 0 0 0 0 0 0 x DFLAON CFLAON
PDO >
=
W
Reset O 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
z
R % 8 %
0 0 0 0 0 0 0 0 0 ; § 8 SYSCLK
Z & | =
w [[|
Reset O 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Figure 58. SAFE Mode Configuration Register (ME_SAFE_MC)
This register configures system behavior during SAFE mode. Please refer to Table 70 for
details.
Note: Byte and half-word write accesses are not allowed to this register.

3

DoclD14629 Rev 9 165/888

Mode Entry Module (MC_ME) RM0017

8.3.1.11 DRUN Mode Configuration Register (ME_DRUN_MC)

Address OXxC3FD_C02C Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 5
0 0 0 0 0 0 0 0O |PDO| O 0 o
§ DFLAON CFLAON
w
Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R = Z =z
5|9 |8
0 0 0 0 0 0 0 0 0 hurt 5] O
i %) 14 SYSCLK
S| Qe
W | &
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 59. DRUN Mode Configuration Register (ME_DRUN_MC)

This register configures system behavior during DRUN mode. Please refer to Table 70 for

details.
Note: Byte and half-word write accesses are not allowed to this register.
Note: The values of FXOSCON, CFLAON and DFLAON are retained through STANDBY mode.

8.3.1.12 RUNO...3 Mode Configuration Registers (ME_RUNO...3_MC)

Address 0xC3FD_CO030 - OxC3FD_C03C Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 5
0 0 0 0 0 0 0 0 |PDO| O 0 x
§ DFLAON CFLAON
\W

Reset O 0 0 0 0 0 0 0 0

o
o
[
=
[
[
=

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R = z Z
o |9 |9
0 0 0 0 0 0 0 0 o9 |8 |0
419 | & SYSCLK
S |2 Lt
W T |2
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 60. RUNO...3 Mode Configuration Registers (ME_RUNO...3_MC)

This register configures system behavior during RUNO...3 modes. Please refer to Table 70
for details.

Note: Byte and half-word write accesses are not allowed to this register.

3

166/888 DoclD14629 Rev 9

RMO0017

Mode Entry Module (MC_ME)

8.3.1.13

Address OxC3FD_C040

HALT Mode Configuration Register (ME_HALT_MC)

Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R oJoJoJoJo[po]oJ]o]Zz
W T | DFLAON | CFLAON
s
Rest 0 O O O |0 0O O ©O0 0 o0 o 1 1 o 1 o
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RLoJof[oJoJoJoJoJololz[z]z
W 41918 SYSCLK
a @] o
: | % &
Rest 0 O O O |0 0O O ©O0]0 ©0o o0 1]o0 o o0 o

Figure 61. HALT Mode Configuration Register (ME_HALT_MC)

This register configures system behavior during HALT mode. Please refer to Table 70 for

details.

Note:

8.3.1.14

Address OxC3FD_C048

STOP Mode Configuration Register (ME_STOP_MC)

Byte and half-word write accesses are not allowed to this register.

Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 0 0 0 0 0 0 0 %
W PDO g DFLAON CFLAON
=
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R z
@) z
| Ie) zZ
0 0 0 0 0 0 0 0 0 - O @)
3) O SYSCLK
= 0 14
w < o
W w
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 62. STOP Mode Configuration Register (ME_STOP_MC)

This register configures system behavior during STOP mode. Please refer to Table 70 for

details.

Note:

3

DoclD14629 Rev 9

Byte and half-word write accesses are not allowed to this register.

167/888

Mode Entry Module (MC_ME) RM0017

8.3.1.15 STANDBY Mode Configuration Register (ME_STANDBY_MC)

Address OxC3FD_C054 Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 5
0 0 0 0 0 0 0 0O |[PDO| O 0 g: DFLAON CFLAON
=
w
Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
zZ =z
) 5158 |z
0 0 0 0 0 0 0 0 0 =l 8 8 SYSCLK
=
z x| &
w [[]
Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Figure 63. STANDBY Mode Configuration Register (ME_STANDBY_MC)

This register configures system behavior during STANDBY mode. Please refer to Table 70
for details.

Note: Byte and half-word write accesses are not allowed to this register.

Table 70. Mode Configuration Registers (ME_<mode> MC) Field Descriptions

Field Description

PDO I/O output power-down control — This bit controls the output power-down of 1/0Os.

0 No automatic safe gating of 1/0Os used and pads power sequence driver is enabled

1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and pads power
sequence driver is disabled. The inputs are level unchanged. In STOP mode, only pad power
sequence driver is disabled but the state of the output is kept. In STANDBY mode, power
sequence driver and all pads except those mapped on wakeup lines are not powered and
therefore high impedance. Wakeup line configuration remains unchanged.

MVRON Main voltage regulator control — This bit specifies whether main voltage regulator is switched off or
not while entering this mode.

0 Main voltage regulator is switched off

1 Main voltage regulator is switched on

DFLAON | Data flash power-down control — This bit specifies the operating mode of the data flash after
entering this mode.

OOreserved

01 Data flash is in power-down mode

10 Data flash is in low-power mode

11 Data flash is in normal mode

Note: If the flash memory is to be powered down in any mode, then your software must ensure that
reset sources are configured as long resets in the RGM_FESS register (see Section 9.3.1.7,
Functional Event Short Sequence Register (RGM_FESS)).

3

168/888 DoclD14629 Rev 9

RM0017 Mode Entry Module (MC_ME)
Table 70. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions(Continued)
Field Description

CFLAON | Code flash power-down control — This bit specifies the operating mode of the program flash after
entering this mode.
00 reserved
01 Code flash is in power-down mode
10 Code flash is in low-power mode
11 Code flash is in normal mode
FMPLLON | frequency modulated phase locked loop control
0 frequency modulated phase locked loop is switched off
1 frequency modulated phase locked loop is switched on
FXOSCON | fast external crystal oscillator (4-16 MHz) control
0 fast external crystal oscillator (4-16 MHz) is switched off
1 fast external crystal oscillator (4-16 MHz) is switched on
FIRCON fast internal RC oscillator (16 MHz) control
0 fastinternal RC oscillator (16 MHz) is switched off
1 fast internal RC oscillator (16 MHz) is switched on
SYSCLK | System clock switch control — These bits specify the system clock to be used by the system.

0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.

0100 freq. mod. PLL

0101 reserved

0110 reserved

0111 reserved

1000 reserved

1001 reserved

1010 reserved

1011 reserved

1100 reserved

1101 reserved

1110 reserved

1111 system clock is disabled

3

DoclD14629 Rev 9 169/888

Mode Entry Module (MC_ME)

RMO0017

8.3.1.16 Peripheral Status Register 0 (ME_PSO0)
Address OxC3FD_C060 Access: Supervisor read
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R L0 < ™ N — o
pd z pd z z z
S|13|3|138|3 |3
0 0 0 0 0 0 0 0 0 0 < < < < < X
() [} () () [} ()
E| E| E| E| E| E|
n n 2 n n 2
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R N pu =
5| 6|5
0 0 0 0 0 0 0 0 0 D| D| D| 0 0 0 0
2 n 2
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register provides the status of the peripherals. Please refer to Table 71 for details.

8.3.1.17

Address OxC3FD_C064

Figure 64. Peripheral Status Register 0 (ME_PSO0)

Peripheral Status Register 1 (ME_PS1)

Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R @
oy V) q - o
% - 3 3 3 &
olo]o| @ |o|o Bl o|lo|o|o|o | |Z Z E
<C n - - - —
) | | [|
| n) n n
)]
W
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 8 8
0 0 0 Ql 0 0 0 0 0 0 0 0 0 0 0 9(
%) o
W
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 65. Peripheral Status Register 1 (ME_PS1)
This register provides the status of the peripherals. Please refer to Table 71 for details.
170/888 DoclD14629 Rev 9 Kys

RMO0017

Mode Entry Module (MC_ME)

8.3.1.18

Address OxC3FD_C068

Peripheral Status Register 2 (ME_PS2)

Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R = a
x| <
0 0 0 I—I O 0 0 0 0 0 0 0 0 0 0 0
O =
| o
0p] (nl
W
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 7 R 2 _
O O g -}
ojojojojojo|S|S|0o|o|E|F|o|lo|lo]o
a.>| ml | U)I
%) %) n
W
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 66. Peripheral Status Register 2 (ME_PS2)

This register provides the status of the peripherals. Please refer to Table 71 for details.

8.3.1.19

Address OxC3FD_C06C

Peripheral Status Register 3 (ME_PS3)

Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R -}
0 0 0 0 0 0 0 % 0 0 0 0 0 0 0 0
0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 67. Run Peripheral Configuration Registers (ME_RUN_PCO0...7)
This register provides the status of the peripherals. Please refer to Table 71 for details.
Table 71. Peripheral Status Registers 0...4 (ME_PSO0...4) Field Descriptions
Field Description
S_<periph> | Peripheral status — These bits specify the current status of the peripherals in the system. If no
peripheral is mapped on a particular position, the corresponding bit is always read as ‘0'.
0 Peripheral is frozen
1 Peripheral is active
1S7 DoclD14629 Rev 9 171/888

Mode Entry Module (MC_ME)

RMO0017

8.3.1.20

Address 0xC3FD_CO080 - 0OxC3FD_C09C

Run Peripheral Configuration Registers (ME_RUN_PCO...7)

Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl 0 0 o] o] o o] o] ololol] o
W
Reset 0 O O O 0 O ©O0 o0,0 ©0o o0 o0 0 o0 o0 o
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R =
olololo|lo|lo]lo|lol|le|g|lglelz|lw|x|®a
z z =z > 5 L 0 o
S |3 |3 |35 |2 | < | W |
o o o g =) wn -
w
Reset 0 0O O ©0 | 0 O ©0 o000 ©0 o0 o0 0 o0 o0 o

Figure 68. Run Peripheral Configuration Registers (ME_RUN_PC0...7)

These registers configure eight different types of peripheral behavior during run modes.

Table 72. Run Peripheral Configuration Registers (ME_RUN_PCO...7) Field Descriptions

Field

Description

RUN3

Peripheral control during RUN3

0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN2

Peripheral control during RUN2

0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN1

Peripheral control during RUN1

0 Peripheral is frozen with clock gated
1 Peripheral is active

RUNO

Peripheral control during RUNO
0 Peripheral is frozen with clock gated
1 Peripheral is active

DRUN

Peripheral control during DRUN

0 Peripheral is frozen with clock gated
1 Peripheral is active

SAFE

Peripheral control during SAFE

0 Peripheral is frozen with clock gated
1 Peripheral is active

TEST

Peripheral control during TEST

0 Peripheral is frozen with clock gated
1 Peripheral is active

RESET

Peripheral control during RESET

0 Peripheral is frozen with clock gated
1 Peripheral is active

172/888

DoclD14629 Rev 9

3

RM0017 Mode Entry Module (MC_ME)

8.3.1.21 Low-Power Peripheral Configuration Registers (ME_LP_PCO...7)

Address OXxC3FD_COAO - OxC3FD_CO0BC Access: Supervisor read/write
0 1 2 3 4 5 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset O 0

o
~
®
©

o
o
o
o
o
o
o
o
o
o
o
o
o
o

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 > 0 0 0 0 0 0 0 0 0 0 0
2 3 .
w 2 O 2
Z 7 T
= (9)]
0
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 69. Low-Power Peripheral Configuration Registers (ME_LP_PCO...7)

These registers configure eight different types of peripheral behavior during non-run modes.

Table 73. Low-Power Peripheral Configuration Registers (ME_LP_PCO...7) Field Descriptions

Field Description

STANDBY | Peripheral control during STANDBY

0 Peripheral is frozen with clock gated
1 Peripheral is active

STOP Peripheral control during STOP

0 Peripheral is frozen with clock gated
1 Peripheral is active

HALT Peripheral control during HALT

0 Peripheral is frozen with clock gated
1 Peripheral is active

8.3.1.22 Peripheral Control Registers (ME_PCTLO...143)

Address OxC3FD_CO0CO - 0xC3FD_C14F Access: Supervisor read/write
0 1 2 3 ‘ 4 5 6 7
R
" DBG_F LP_CFG RUN_CFG
Reset 0 0 0 0 | 0 0 0 0

Figure 70. Peripheral Control Registers (ME_PCTLO...143)

These registers select the configurations during run and non-run modes for each peripheral.

3

DoclD14629 Rev 9 173/888

Mode Entry Module (MC_ME) RM0017

Table 74. Peripheral Control Registers (ME_PCTLO...143) Field Descriptions

Field Description

DBG_F Peripheral control in debug mode — This bit controls the state of the peripheral in debug mode.

0 Peripheral state depends on RUN_CFG/LP_CFG bits and the device mode.

1 Peripheral is frozen if not already frozen in device modes.

Note: This feature is useful to freeze the peripheral state while entering debug. For example, this may
be used to prevent a reference timer from running while making a debug accesses.

LP_CFG | Peripheral configuration select for non-run modes — These bits associate a configuration as defined
in the ME_LP_PCO...7 registers to the peripheral.

000 Selects ME_LP_PCO configuration
001 Selects ME_LP_PC1 configuration
010 Selects ME_LP_PC2 configuration
011 Selects ME_LP_PC3 configuration
100 Selects ME_LP_PC4 configuration
101 Selects ME_LP_PCS5 configuration
110 Selects ME_LP_PC6 configuration
111 Selects ME_LP_PC7 configuration

RUN_CFG | Peripheral configuration select for run modes — These bits associate a configuration as defined in
the ME_RUN_PCO...7 registers to the peripheral.

000 Selects ME_RUN_PCO configuration
001 Selects ME_RUN_PC1 configuration
010 Selects ME_RUN_PC2 configuration
011 Selects ME_RUN_PC3 configuration
100 Selects ME_RUN_PC4 configuration
101 Selects ME_RUN_PCS5 configuration
110 Selects ME_RUN_PC6 configuration
111 Selects ME_RUN_PC7 configuration

Table 75. Peripheral control registers by peripheral

Peripheral ME_PCTLn
ADC_0 32
CAN sampler 60
CcMU 104
CTU 57
DMA_MUX 23
DSPI_0 4
DSPI_1 5
DSPI_2 6
DSPI_3 7
eMIOS_0 72
eMIOS 1 73
FlexCAN_O 16
FlexCAN_1 17
FlexCAN_2 18
174/888 DoclD14629 Rev 9 "_l

RMO0017

Mode Entry Module (MC_ME)

8.4

8.4.1

Note:

3

Table 75. Peripheral control registers by peripheral(Continued)

Peripheral ME_PCTLn

FlexCAN_3 10

FlexCAN_4 20

FlexCAN_5 21

12C 44

LINFlex_0 48

LINFlex_1 49

LINFlex_2 50

LINFlex_3 51

PIT 92

RTC/API 91

SIUL 68

WKPU 69

Functional Description

Mode Transition Request

The transition from one mode to another mode is normally handled by software by accessing
the mode control ME_MCTL register. But in case of special events, mode transition can be
automatically managed by hardware. In order to switch from one mode to another, the
application should access ME_MCTL register twice by writing

e the first time with the value of the key (OX5AFO) into the KEY bit field and the required
target mode into the TARGET_MODE bit field,

e and the second time with the inverted value of the key (OXA50F) into the KEY bit field
and the required target mode into the TARGET_MODE bit field.

Once a valid mode transition request is detected, the target mode configuration information
is loaded from the corresponding ME_<mode>_MC register. The mode transition request
may require a number of cycles depending on the programmed configuration, and software
should check the S_ CURRENT_MODE bit field and the S_MTRANS bit of the global status
register ME_GS to verify when the mode has been correctly entered and the transition
process has completed. For a description of valid mode requests, please refer to

Section 8.4.5: Mode Transition Interrupts.

Any modification of the mode configuration register of the currently selected mode will not be
taken into account immediately but on the next request to enter this mode. This means that
transition requests such as RUNO...3 —- RUNO...3, DRUN — DRUN, SAFE —» SAFE, and
TEST — TEST are considered valid mode transition requests. As soon as the mode request
is accepted as valid, the S_ MTRANS bit is set till the status in the ME_GS register matches
the configuration programmed in the respective ME_<mode>_MC register.

It is recommended that software poll the S_ MTRANS bit in the ME_GS register after
requesting a transition to HALT, STOP, or STANDBY modes.

DoclD14629 Rev 9 175/888

Mode Entry Module (MC_ME) RM0017

SYSTEM MODES 'ecoverable USER MODES

software
request

non-recoverable
failure

hardware failure

STANDBY

8.4.2

8.4.2.1

176/888

Figure 71. MC_ME Mode Diagram

Modes Details

RESET Mode

The device enters this mode on the following events:

e from SAFE, DRUN, RUNO...3, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0000”

¢ from any mode due to a system reset by the MC_RGM because of some non-
recoverable hardware failure in the system (see the MC_RGM chapter for details)

Transition to this mode is instantaneous, and the system remains in this mode until the reset
sequence is finished. The mode configuration information for this mode is provided by the
ME_RESET_MC register. This mode has a pre-defined configuration, and the 16 MHz int. RC
osc. is selected as the system clock. All power domains are made active in this mode.

3

DoclD14629 Rev 9

RMO0017

Mode Entry Module (MC_ME)

8.4.2.2

Note:

8.4.2.3

Note:

3

DRUN Mode

The device enters this mode on the following events.
e automatically from RESET mode after completion of the reset sequence

e from RUNO...3, SAFE, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0011”

o from the STANDBY mode after an external wakeup event or internal wakeup alarm
(e.g. RTC/API event)

As soon as any of the above events has occurred, a DRUN mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_DRUN_MC register. In this mode, the flashes, all clock sources, and the system clock
configuration can be controlled by software as required. After system reset, the software
execution starts with the default configuration selecting the 16 MHz int. RC osc. as the
system clock.

This mode is intended to be used by software
e toinitialize all registers as per the system needs
e to execute small routines in a ‘ping-pong’ with the STANDBY mode

When this mode is entered from STANDBY after a wakeup event, the ME_DRUN_MC
register content is restored to its pre-STANDBY values, and the mode starts in that
configuration.

All power domains are active when this mode is entered due to a system reset sequence
initiated by a destructive reset event. In other cases of entry, such as the exit from STANDBY
after a wakeup event, a functional reset event like an external reset or a software request
from RUNO...3, SAFE, or TEST mode, active power domains are determined by the power
configuration register PCU_PCONF2 of the MC_PCU. All power domains except power
domains #0 and #1 are configurable in this mode (see the MC_PCU chapter for details).

As flashes can be configured in low-power or power-down state in this mode, software must
ensure that the code executes from SRAM before changing to this mode.

SAFE Mode

The device enters this mode on the following events:

e from DRUN, RUNO...3, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0010”

e from any mode except RESET due to a SAFE mode request generated by the
MC_RGM because of some potentially recoverable hardware failure in the system (see
the MC_RGM chapter for details)

As soon as any of the above events has occurred, a SAFE mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_SAFE_MC register. This mode has a pre-defined configuration, and the 16 MHz int. RC
osc. is selected as the system clock. All power domains are made active in this mode.

If the SAFE mode is requested by software while some other mode transition process is
ongoing, the new target mode becomes the SAFE mode regardless of other pending
requests. In this case, the new mode request is not interpreted as an invalid request.

If software requests to change to the SAFE mode and then requests to change back to the
parent mode before the mode transition is completed, the device’s final mode after mode
transition will be the parent mode. However, this is hot recommended software behavior. It is

DoclD14629 Rev 9 177/888

Mode Entry Module (MC_ME) RM0017

8.4.2.4

Note:

8.4.2.5

178/888

recommended for software to wait until the S_MTRANS bit is cleared after requesting a
change to SAFE before requesting another mode change.

As long as a SAFE event is active, the system remains in the SAFE mode and no write
access is allowed to the ME_MCTL register.
This mode is intended to be used by software
e to assess the severity of the cause of failure and then to either
— re-initialize the device via the DRUN mode, or
— completely reset the device via the RESET mode.
If the outputs of the system 1/Os need to be forced to a high impedance state upon entering

this mode, the PDO bit of the ME_SAFE_MC register should be set. In this case, the pads’
power sequence driver cell is also disabled. The input levels remain unchanged.

TEST Mode

The device enters this mode on the following events:
e from the DRUN mode when the TARGET_MODE bit field of the ME_MCTL register is
written with “0001”

As soon as any of the above events has occurred, a TEST mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_TEST_MC register. Except for the main voltage regulator, all resources of the system are
configurable in this mode. The system clock to the whole system can be stopped by
programming the SYSCLK bit field to “1111”, and in this case, the only way to exit this mode
is via a device reset.

This mode is intended to be used by software

e to execute on-chip test routines

All power domains except power domains #0 and #1 are configurable in this mode. Active

power domains are determined by the power configuration register PCU_PCONF2 of the
MC_PCU.

As flash modules can be configured to a low-power or power-down state in these modes,
software must ensure that the code will execute from SRAM before it changes to this mode.

RUNO...3 Modes

The device enters one of these modes on the following events:

e from the DRUN another RUNO...3 mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0100...0111”

e from the HALT mode by an interrupt event

e from the STOP mode by an interrupt or wakeup event

As soon as any of the above events occur, a RUNO...3 mode transition request is generated.
The mode configuration information for these modes is provided by ME_RUNO...3 MC
registers. In these modes, the flashes, all clock sources, and the system clock configuration
can be controlled by software as required.

These modes are intended to be used by software

e to execute application routines

3

DoclD14629 Rev 9

RMO0017

Mode Entry Module (MC_ME)

Note:

8.4.2.6

8.4.2.7

3

All power domains except power domains #0 and #1 are configurable in these modes in order
to reduce leakage consumption. Active power domains are determined by the power
configuration register PCU_PCONF2 of the MC_PCU.

As flash modules can be configured to a low-power or power-down state in these modes,
software must ensure that the code will execute from SRAM before it changes to this mode.

HALT Mode

The device enters this mode on the following events:
o from one of the RUNO...3 modes when the TARGET_MODE bit field of the ME_MCTL
register is written with “1000".

As soon as any of the above events occur, a HALT mode transition request is generated. The
mode configuration information for this mode is provided by ME_HALT_MC register. This
mode is quite configurable, and the ME_HALT_MC register should be programmed
according to the system needs. The main voltage regulator and the flashes can be put in
power-down mode as needed. If there is a HALT mode request while an interrupt request is
active, the device mode does not change, and an invalid mode interrupt is not generated.
This mode is intended as a first level low-power mode with

e the core clock frozen

e only a few peripherals running

and to be used by software
e to wait until it is required to do something and then to react quickly (i.e. within a few
system clock cycles of an interrupt event)

All power domains except power domains #0 and #1 are configurable in this mode in order
to reduce leakage consumption. Active power domains are determined by the power
configuration register PCU_PCONF2 of the MC_PCU.

STOP Mode

The device enters this mode on the following events:
e from one of the RUNO...3 modes when the TARGET_MODE bit field of the ME_MCTL
register is written with “1010".

As soon as any of the above events occur, a STOP mode transition request is generated. The
mode configuration information for this mode is provided by the ME_STOP_MC register. This
mode is fully configurable, and the ME_STOP_MC register should be programmed according
to the system needs. The FMPLL is switched off in this mode. The main voltage regulator and
the flashes can be put in power-down mode as needed. If there is a STOP mode request
while any interrupt or wakeup event is active, the device mode does not change, and an
invalid mode interrupt is not generated.

This can be used as an advanced low-power mode with the core clock frozen and almost all
peripherals stopped.

This mode is intended as an advanced low-power mode with
e the core clock frozen

e almost all peripherals stopped

and to be used by software

e to wait until it is required to do something with no need to react quickly (e.g. allow for
system clock source to be re-started)

DoclD14629 Rev 9 179/888

Mode Entry Module (MC_ME) RM0017

8.4.2.8

8.4.3

8.4.3.1

180/888

If the pads’ power sequence driver cell needs to be disabled while entering this mode, the
PDO bit of the ME_STOP_MC register should be set. The state of the outputs is kept.

This mode can be used to stop all clock sources, thus preserving the device status. When
exiting the STOP mode, the fast internal RC oscillator (16 MHz) clock is selected as the
system clock until the target clock is available.

All power domains except power domains #0 and #1 are configurable in this mode in order
to reduce leakage consumption. Active power domains are determined by the power
configuration register PCU_PCONF2 of the MC_PCU.

STANDBY Mode

The device enters this mode on the following events:

e from the DRUN or one of the RUNO...3 modes when the TARGET_MODE bit field of
the ME_MCTL register is written with “1101".

As soon as any of the above events occur, a STANDBY mode transition request is generated.
The mode configuration information for this mode is provided by the ME_STANDBY_MC
register. In this mode, the power supply is turned off for most of the device. The only parts of
the device that are still powered during this mode are pads mapped on wakeup lines and
power domain #0 which contains the MC_RGM, MC_PCU, WKPU, 8K RAM, RTC_API,
CANSampler, SIRC, FIRC, SXOSC, and device and user option bits. The FIRC can be
optionally switched off. This is the lowest power consumption mode possible on the device.

This mode is intended as an extreme low-power mode with
e the core, the flashes, and almost all peripherals and memories powered down

and to be used by software

e towait until it is required to do something with no need to react quickly (i.e. allow for
system power-up and system clock source to be re-started)

The exit sequence of this mode is similar to the reset sequence. However, in addition to
booting from the default location, the device can also be configured to boot from the backup
SRAM (see the RGM_STDBY register description in the MC_RGM chapter for details). In the
case of booting from backup SRAM, itis also possible to keep the flashes disabled by writing
“01” to the CFLAON and DFLAON fileds in the ME_DRUN_MC register prior to STANDBY
entry.

If there is a STANDBY mode request while any wakeup event is active, the device mode does
not change.

All power domains except power domain #0 are configurable in this mode in order to reduce
leakage consumption. Active power domains are determined by the power configuration
register PCU_PCONF2 of the MC_PCU.

Mode Transition Process

The process of mode transition follows the following steps in a pre-defined manner
depending on the current device mode and the requested target mode. In many cases of
mode transition, not all steps need to be executed based on the mode control information,
and some steps may not be valid according to the mode definition itself.

Target Mode Request

The target mode is requested by accessing the ME_MCTL register with the required keys.
This mode transition request by software must be a valid request satisfying a set of pre-

DoclD14629 Rev 9 ‘Yl

RMO0017

Mode Entry Module (MC_ME)

8.4.3.2

defined rules to initiate the process. If the request fails to satisfy these rules, it is ignored, and
the TARGET_MODE bit field is not updated. An optional interrupt can be generated for invalid
mode requests. Refer to Section 8.4.5: Mode Transition Interrupts for details.

In the case of mode transitions occurring because of hardware events such as a reset, a
SAFE mode request, or interrupt requests and wakeup events to exit from low-power modes,
the TARGET_MODE bit field of the ME_MCTL register is automatically updated with the
appropriate target mode. The mode change process start is indicated by the setting of the
mode transition status bit S_ MTRANS of the ME_GS register.

A RESET mode requested via the ME_MCTL register is passed to the MC_RGM, which
generates a global system reset and initiates the reset sequence. The RESET mode request
has the highest priority, and the MC_ME is kept in the RESET mode during the entire reset
sequence.

The SAFE mode request has the next highest priority after reset which can be generated by
software via the ME_MCTL register from all software running modes including DRUN,
RUNO...3, and TEST or by the MC_RGM after the detection of system hardware failures,
which may occur in any mode.

Target Mode Configuration Loading

On completion of the Section 8.4.3.1: Target Mode Request, the target mode configuration
from the ME_<target mode>_MC register is loaded to start the resources (voltage sources,
clock sources, flashes, pads, etc.) control process.

An overview of resource control possibilities for each mode is shown in Table 76. A ‘\'
indicates that a given resource is configurable for a given mode.

Table 76. MC_ME Resource Control Overview

Resource

Mode

RESET TEST SAFE DRUN RUNO...3 HALT STOP STANDBY

FIRC

N J N N

on on on on on on on on

FXOSC

v N N N v
off off off off off off off off

FMPLL

v N N N
off off off off off off off off

CFLASH

N V V V N

normal normal normal normal normal low-power power- power-
down down

DFLASH

N v v v N

normal normal normal normal normal low-power power- power-
down down

MVREG

v N

on on on on on on on off

3

DoclD14629 Rev 9 181/888

Mode Entry Module (MC_ME)

RMO0017

Table 76. MC_ME Resource Control Overview(Continued)

Resource

Mode

RESET TEST SAFE DRUN RUNO...3 HALT STOP STANDBY

PDO

N N N

off off on off off off off on

8.4.3.3

Caution:

8.43.4

8.4.3.5

182/888

Peripheral Clocks Disable

On completion of the Section 8.4.3.1: Target Mode Request, the MC_ME requests each
peripheral to enter its stop mode when:

e the peripheral is configured to be disabled via the target mode, the peripheral
configuration registers ME_RUN_PCO...7 and ME_LP_PCO0...7, and the peripheral
control registers ME_PCTLO...143

The MC_ME does not automatically request peripherals to enter their stop modes if the
power domains in which they are residing are to be turned off due to a mode change.
Therefore, it is software’s responsibility to ensure that those peripherals that are to be
powered down are configured in the MC_ME to be frozen.

Each peripheral acknowledges its stop mode request after closing its internal activity. The
MC_ME then disables the corresponding clock(s) to this peripheral.

In the case of a SAFE mode transition request, the MC_ME does not wait for the peripherals
to acknowledge the stop requests. The SAFE mode clock gating configuration is applied
immediately regardless of the status of the peripherals’ stop acknowledges.

Please refer to Section 8.4.6: Peripheral Clock Gating for more details.

Each peripheral that may block or disrupt a communication bus to which it is connected
ensures that these outputs are forced to a safe or recessive state when the device enters the
SAFE mode.

Processor Low-Power Mode Entry

If, on completion of the Section 8.4.3.3: Peripheral Clocks Disable, the mode transition is to
the HALT mode, the MC_ME requests the processor to enter its halted state. The processor
acknowledges its halt state request after completing all outstanding bus transactions.

If, on completion of the Section 8.4.3.3: Peripheral Clocks Disable, the mode transition is to
the STOP or STANDBY mode, the MC_ME requests the processor to enter its stopped state.
The processor acknowledges its stop state request after completing all outstanding bus
transactions.

Processor and System Memory Clock Disable

If, on completion of the Section 8.4.3.4: Processor Low-Power Mode Entry, the mode
transition is to the HALT, STOP, or STANDBY mode and the processor is in its appropriate
halted or stopped state, the MC_ME disables the processor and system memory clocks to
achieve further power saving.

The clocks to the processor and system memories are unaffected for all transitions between
software running modes including DRUN, RUNO...3, and SAFE.

S74

DoclD14629 Rev 9

RMO0017

Mode Entry Module (MC_ME)

Caution:

8.4.3.6

Note:

8.4.3.7

8.4.3.8

3

Clocks to the whole device including the processor and system memories can be disabled in
TEST mode.

Clock Sources Switch-On

On completion of the Section 8.4.3.4: Processor Low-Power Mode Entry, the MC_ME
controls all clock sources that affect the system clock based on the <clock source>ON bits of
the ME_<current mode>_MC and ME_<target mode>_MC registers. The following system
clock sources are controlled at this step:

e the fast internal RC oscillator (16 MHz)
e the fast external crystal oscillator (4-16 MHz)

The frequency modulated phase locked loop, which needs the main voltage regulator to be
stable, is not controlled by this step.

The clock sources that are required by the target mode are switched on. The duration
required for the output clocks to be stable depends on the type of source, and all further steps
of mode transition depending on one or more of these clocks waits for the stable status of the
respective clocks. The availability status of these system clocks is updated in the

S_<clock source> bits of ME_GS register.

The clock sources which need to be switched off are unaffected during this process in order
to not disturb the system clock which might require one of these clocks before switching to a
different target clock.

Main Voltage Regulator Switch-On

On completion of the Section 8.4.3.1: Target Mode Request, if the main voltage regulator
needs to be switched on from its off state based on the MVRON bit of the

ME_<current mode>_MC and ME_<target mode>_MC registers, the MC_ME requests the
MC_PCU to power-up the regulator and waits for the output voltage stable status in order to
update the S_MVR bit of the ME_GS register.

This step is required only during the exit of the low-power modes HALT and STOP. In this
step, the fast internal RC oscillator (16 MHz) is switched on regardless of the target mode
configuration, as the main voltage regulator requires the 16 MHz int. RC osc. during power-
up in order to generate the voltage status.

During the STANDBY exit sequence, the MC_PCU alone manages the power-up of the main
voltage regulator, and the MC_ME is kept in RESET or shut off (depending on the power
domain #1 status).

Flash Modules Switch-On

On completion of the Section 8.4.3.7: Main Voltage Regulator Switch-On, if a flash module
needs to be switched to normal mode from its low-power or power-down mode based on the
CFLAON and DFLAON bit fields of the ME_<current mode>_MC and

ME_<target mode>_MC registers, the MC_ME requests the flash to exit from its low-
power/power-down mode. When the flash modules are available for access, the S_CFLA and
S_DFLA bit fields of the ME_GS register are updated to “11” by hardware.

If the main regulator is also off in device low-power modes, then during the exit sequence,
the flash is kept in its low-power state and is switched on only when the Section 8.4.3.7: Main
Voltage Regulator Switch-On process has completed.

DoclD14629 Rev 9 183/888

Mode Entry Module (MC_ME) RM0017

Caution:

8.4.3.9

8.4.3.10

8.4.3.11

8.4.3.12

8.4.3.13

8.4.3.14

184/888

Itis illegal to switch the flashes from low-power mode to power-down mode and from power-
down mode to low-power mode. The MC_ME, however, does not prevent this nor does it
flag it.

FMPLL Switch-On

On completion of the Section 8.4.3.6: Clock Sources Switch-On and Section 8.4.3.7: Main
Voltage Regulator Switch-On, if the FMPLL is to be switched on from the off state based on
the FMPLLON bit of the ME_<current mode>_MC and ME_<target mode>_ MC registers, the
MC_ME requests the FMPLL digital interface to start the phase locking process and waits for
the FMPLL to enter into the locked state. When the FMPLL enters the locked state and starts
providing a stable output clock, the S_FMPLL bit of ME_GS register is set.

Power Domain #2 Switch-On

On completion of the Section 8.4.3.7: Main Voltage Regulator Switch-On, the MC_ME
indicates a mode change to the MC_PCU. The MC_PCU then determines whether a power-
up sequence is required for power domain #2. Only after the MC_PCU has executed all
required power-ups does the MC_ME complete the mode transition.

Pad Outputs-On

On completion of the Section 8.4.3.7: Main Voltage Regulator Switch-On, if the PDO bit of
the ME_<target mode>_MC register is cleared, then

e all pad outputs are enabled to return to their previous state
e the I/O pads power sequence driver is switched on

Peripheral Clocks Enable

Based on the current and target device modes, the peripheral configuration registers
ME_RUN_PCO...7, ME_LP_PCO...7, and the peripheral control registers ME_PCTLO...143,
the MC_ME enables the clocks for selected modules as required. This step is executed only
after the Section 8.4.3.7: Main Voltage Regulator Switch-On process is completed.

Also if a mode change translates to a power up of one or more power domains, the MC_PCU
indicates the MC_ME after completing the power-up sequence upon which the MC_ME may
assert the peripheral clock enables of the peripherals residing in those power domains.

Processor and Memory Clock Enable

If the mode transition is from any of the low-power modes HALT or STOP to RUNO...3, the
clocks to the processor and system memories are enabled. The process of enabling these
clocks is executed only after the Section 8.4.3.8: Flash Modules Switch-On process is
completed.

Processor Low-Power Mode Exit

If the mode transition is from any of the low-power modes HALT, STOP, or STANDBY to
RUNO...3, the MC_ME requests the processor to exit from its halted or stopped state. This
step is executed only after the Section 8.4.3.13: Processor and Memory Clock Enable
process is completed.

3

DoclD14629 Rev 9

RMO0017

Mode Entry Module (MC_ME)

8.4.3.15

3

System Clock Switching

Based on the SYSCLK bit field of the ME_<current mode>_MC and ME_<target mode>_MC
registers, if the target and current system clock configurations differ, the following method is
implemented for clock switching.

The target clock configuration for the 16 MHz int. RC osc. is effective only when the
S_FIRC bit of the ME_GS register is set by hardware (i.e. the fast internal RC oscillator
(16 MHz) has stabilized).

The target clock configuration for the div. 16 MHz int. RC osc. is effective only when the
S_FIRC bit of the ME_GS register is set by hardware (i.e. the fast internal RC oscillator
(16 MHz) has stabilized).

The target clock configuration for the 4-16 MHz ext. xtal osc. is effective only when the
S_FXOSC bit of the ME_GS register is set by hardware (i.e the fast external crystal
oscillator (4-16 MHz) has stabilized).

The target clock configuration for the div. ext. xtal osc. is effective only when the
S_FXOSC bit of the ME_GS register is set by hardware (i.e the fast external crystal
oscillator (4-16 MHz) has stabilized).

The target clock configuration for the freq. mod. PLL is effective only when the
S_FMPLL bit of the ME_GS register is set by hardware (i.e. the frequency modulated
phase locked loop has stabilized).

If the clock is to be disabled, the SYSCLK bit field should be programmed with “1111”.
This is possible only in the STOP and TEST modes. In the STANDBY mode, the clock
configuration is fixed, and the system clock is automatically forced to ‘0’.

The current system clock configuration can be observed by reading the S_SYSCLK bit field
of the ME_GS register, which is updated after every system clock switching. Until the target
clock is available, the system uses the previous clock configuration.

System clock switching starts only after

the Section 8.4.3.6: Clock Sources Switch-On process has completed if the target
system clock source needs to be switched on

the Section 8.4.3.9: FMPLL Switch-On process has completed if the target system
clock is the freq. mod. PLL

the Section 8.4.3.3: Peripheral Clocks Disable process is completed in order not to
change the system clock frequency before peripherals close their internal activities

An overview of system clock source selection possibilities for each mode is shown in
Table 77. A V' indicates that a given clock source is selectable for a given mode.

DoclD14629 Rev 9 185/888

Mode Entry Module (MC_ME)

RMO0017

Table 77. MC_ME System Clock Selection Overview

System Mode
Clock
Source | RESET TEST SAFE DRUN | RUNO..3 | HALT STOP | STANDBY
16 MHz V V V \ \ \ \
int. RC (default) (default) (default) (default) (default) (default) (default)
oscC.
div. 16 V \ \ \ \
MHz int.
RC osc.
4-16 MHz Y y \ S \
ext. xtal
osc.
div. ext. \/ v v v v
xtal osc.
freq. mod. \/ S S S
PLL
system V@) S Y
clock is (default)
disabled

1. Disabling the system clock during TEST mode will require a reset in order to exit TEST mode.

8.4.3.16

8.4.3.17

186/888

Power Domain #2 Switch-Off

Based on the device mode and the MC_PCU'’s power configuration register PCU_PCONF2,
the power domain #2 is controlled by the MC_PCU.

If a mode change translates to a power-down of the power domain, then the MC_PCU starts
the power-down sequence. The MC_PCU acknowledges the completion of the power-down
sequence with respect to the new mode, and the MC_ME uses this information to update the
mode transition status. This step is executed only after the Section 8.4.3.3: Peripheral Clocks
Disable process has completed.

Pad Switch-Off

If the PDO bit of the ME_<target mode>_MC register is ‘1’ then
e the outputs of the pads are forced to the high impedance state if the target mode is
SAFE or TEST

e |/O pads power sequence driver is switched off if the target mode is one of SAFE,
TEST, or STOP modes

In STANDBY mode, the power sequence driver and all pads except the external reset and
those mapped on wakeup lines are not powered and therefore high impedance. The wakeup
line configuration remains unchanged.

This step is executed only after the Section 8.4.3.3: Peripheral Clocks Disable process is
completed.

3

DoclD14629 Rev 9

RMO0017

Mode Entry Module (MC_ME)

8.4.3.18

8.4.3.19

8.4.3.20

8.4.3.21

3

FMPLL Switch-Off

Based on the FMPLLON bit of the ME_<current mode>_MC and ME_<target mode>_MC
registers, if FMPLL is to be switched off, the MC_ME requests the FMPLL to power down and
updates its availability status bit S_ FMPLL of the ME_GS register to ‘0’. This step is executed
only after the Section 8.4.3.15: System Clock Switching process is completed.

Clock Sources Switch-Off

Based on the device mode and the <clock source>ON bits of the ME_<mode>_ MC registers,
if a given clock source is to be switched off, the MC_ME requests the clock source to power
down and updates its availability status bit S_<clock source> of the ME_GS register to ‘0'.

This step is executed only after

e Section 8.4.3.15: System Clock Switching process is completed in order not to lose the
current system clock during mode transition.

e Section 8.4.3.18: FMPLL Switch-Off as the input reference clock of the FMPLL can be
among these clock sources. This is needed to prevent an unwanted lock transition
when the FMPLL is switched on.

Flash Switch-Off

Based on the CFLAON and DFLAON bit fields of the ME_<current mode>_MC and
ME_<target mode>_MC registers, if any of the flash modules is to be put in a low-power
state, the MC_ME requests the flash to enter the corresponding low-power state and waits
for the deassertion of flash ready status signal. The exact low-power mode status of the flash
modules is updated in the S_CFLA and S_DFLA bit fields of the ME_GS register. This step
is executed only when Section 8.4.3.5: Processor and System Memory Clock Disable
process is completed.

Main Voltage Regulator Switch-Off

Based on the MVRON bit of the ME_<current mode>_MC and ME_<target mode>_MC
registers, if the main voltage regulator is to be switched off, the MC_ME requests it to power
down and clears the availability status bit S_MVR of the ME_GS register.

This step is required only during the entry of low-power modes like HALT and STOP. This step

is executed only after completing the following processes:

e Section 8.4.3.18: FMPLL Switch-Off

e Section 8.4.3.20: Flash Switch-Off

e Section 8.4.3.16: Power Domain #2 Switch-Off

e Section 8.4.3.10: Power Domain #2 Switch-On

e the device consumption is less than the pre-defined threshold value (i.e. the S_DC bit
of the ME_GS register is ‘0’).

If the target mode is STANDBY, the main voltage regulator is not switched off by the MC_ME
and the STANDBY request is asserted after the above processes have completed upon
which the MC_PCU takes control of the main regulator. As the MC_PCU needs the 16 MHz
int. RC osc., the fast internal RC oscillator (16 MHz) remains active until all the STANDBY
steps are executed by the MC_PCU after which it may be switched off depending on the
FIRCON bit of the ME_STANDBY_MC register.

DoclD14629 Rev 9 187/888

Mode Entry Module (MC_ME) RM0017

8.4.3.22 Current Mode Update
The current mode status bit field S_ CURRENT_MODE of the ME_GS register is updated
with the target mode bit field TARGET_MODE of the ME_MCTL register when:

e all the updated status bits in the ME_GS register match the configuration specified in
the ME_<target mode>_MC register

e power sequences are done

e clock disable/enable process is finished

e processor low-power mode (halt/stop) entry and exit processes are finished

Software can monitor the mode transition status by reading the S_ MTRANS bit of the ME_GS

register. The mode transition latency can differ from one mode to another depending on the
resources’ availability before the new mode request and the target mode’s requirements.

3

188/888 DoclD14629 Rev 9

RMO0017

Mode Entry Module (MC_ME)

Target Mode Request

l«—— Write ME_MCTL register

l«<—— SAFE mode request
«—— interrupt/wakeup event

s |
K Y ! |
‘ ‘£ Clock sources Main VREG >|
< Switch-On Switch-On ®)
| |
= O]
3 | Sl
K% Y ¥ =Y
‘ PLL Y Y Y <
\ Switch-On FLASH Power Domain Pad |
‘ Switch-On Switch-On Outputs -On |
| ! |
| Peripheral Clocks |
Disable Y
| Processor & |
\ Memory |
Y
| Clock Enable |
\J Peripheral Clock
Y ‘L eripheral Clocks
Y'Y
| Processor Enable |
Il Low-Power System Clock Processor |
| Entry Switching Low-Power |
Exit
\ Y |
|| Processor & |
Memory >
| Clock Disable |
\ Y |
| Y r * PLL \ |
\ FLASH [Power Domain PAD Switch-Off |
‘ Switch-Off Switch-Off Outputs -Off i
@]
| | | %)
| ol
~ Y <
| Main VREG STANDBY =y
\ Switch-Off Request Clock sources <
\ Switch-Off j |
\ |
L ¢ ____________________ J
Current Mode Update L » S MTRANS =0’
Y
End
Figure 72. MC_ME Transition Diagram
‘Yl DoclD14629 Rev 9 189/888

Mode Entry Module (MC_ME) RM0017

8.4.4

Note:

Caution:

8.4.5

8.45.1

8.45.2

190/888

Protection of Mode Configuration Registers

While programming the mode configuration registers ME_<mode>_MC, the following rules
must be respected. Otherwise, the write operation is ignored and an invalid mode
configuration interrupt may be generated.

e FIRC must be on if the system clock is one of the following:
— 16 MHz int. RC osc.
— div. 16 MHz int. RC osc.
e FXOSC must be on if the system clock is one of the following:
— 4-16 MHz ext. xtal osc.
— div. ext. xtal osc.
Software must ensure to switch on the clock source that provides the input reference clock
to the FMPLL. There is no automatic protection mechanism to check this in the MC_ME.
e FMPLL must be on if the system clock is the freq. mod. PLL.
e Configuration “00” for the CFLAON and DFLAON bit fields are reserved.
e MVREG must be on if any of the following is active:
- FMPLL
— CFLASH
— DFLASH
e System clock configurations marked as ‘reserved’ may not be selected.
e Configuration “1111” for the SYSCLK bit field is allowed only for the STOP and TEST
modes, and only in this case may all system clock sources be turned off.

If the system clock is stopped during TEST mode, the device can exit only via a system
reset.

Mode Transition Interrupts

The following are the three interrupts related to mode transition implemented in the MC_ME.

Invalid Mode Configuration Interrupt

Whenever a write operation is attempted to the ME_<mode>_MC registers violating the
protection rules mentioned in the Section 8.4.4: Protection of Mode Configuration Registers,
the interrupt pending bit |_ICONF of the ME_IS register is set and an interrupt request is
generated if the mask bit M_ICONF of ME_IM register is ‘1'.

Invalid Mode Transition Interrupt

The mode transition request is considered invalid under the following conditions:

e Ifthe system is in the SAFE mode and the SAFE mode request from MC_RGM is
active, and if the target mode requested is other than RESET or SAFE, then this new
mode request is considered to be invalid, and the S_SEA bit of the ME_IMTS register
is set.

e Ifthe TARGET_MODE bit field of the ME_MCTL register is written with a value different
from the specified mode values (i.e. a non existing mode), an invalid mode transition
event is generated. When such a non existing mode is requested, the S_NMA bit of the

DoclD14629 Rev 9 ‘Yl

RMO0017

Mode Entry Module (MC_ME)

Note:

8.4.5.3

3

ME_IMTS register is set. This condition is detected regardless of whether the proper
key mechanism is followed while writing the ME_MCTL register.

e If some of the device modes are disabled as programmed in the ME_ME register, their
respective configurations are considered reserved, and any access to the ME_MCTL
register with those values results in an invalid mode transition request. When such a
disabled mode is requested, the S_DMA bit of the ME_IMTS register is set. This
condition is detected regardless of whether the proper key mechanism is followed while
writing the ME_MCTL register.

e If the target mode is not a valid mode with respect to current mode, the mode request
illegal status bit S_MRI of the ME_IMTS register is set. This condition is detected only
when the proper key mechanism is followed while writing the ME_MCTL register.
Otherwise, the write operation is ignored.

e If further new mode requests occur while a mode transition is in progress (the
S _MTRANS bit of the ME_GS register is ‘1’), the mode transition illegal status bit
S_MTI of the ME_IMTS register is set. This condition is detected only when the proper
key mechanism is followed while writing the ME_MCTL register. Otherwise, the write
operation is ignored.

As the causes of invalid mode transitions may overlap at the same time, the priority
implemented for invalid mode transition status bits of the ME_IMTS register in the order
from highest to lowestis S_SEA, S_ NMA, S DMA, S_MRI, and S_MTI.

As an exception, the mode transition request is not considered as invalid under the following
conditions:

e A new request is allowed to enter the RESET or SAFE mode irrespective of the mode
transition status.

e Asthe exit of HALT and STOP modes depends on the interrupts of the system which
can occur at any instant, these requests to return to RUNO...3 modes are always valid.

e Inorderto avoid any unwanted lockup of the device modes, software can abort a mode
transition by requesting the parent mode if, for example, the mode transition has not
completed after a software determined ‘reasonable’ amount of time for whatever
reason. The parent mode is the device mode before a valid mode request was made.

e Self-transition requests (e.g. RUNO — RUNO) are not considered as invalid even when
the mode transition process is active (i.e. S_MTRANS is ‘1"). During the low-power
mode exit process, if the system is not able to enter the respective RUNO...3 mode
properly (i.e. all status bits of the ME_GS register match with configuration bits in the
ME_<mode>_MC register), then software can only request the SAFE or RESET mode.
It is not possible to request any other mode or to go back to the low-power mode again.

Whenever an invalid mode request is detected, the interrupt pending bit |_IMODE of the
ME_IS register is set, and an interrupt request is generated if the mask bit M_IMODE is
ME_IM regqister is ‘1.

SAFE Mode Transition Interrupt

Whenever the system enters the SAFE mode as a result of a SAFE mode request from the
MC_RGM due to a hardware failure, the interrupt pending bit |_SAFE of the ME_IS register
is set, and an interrupt is generated if the mask bit M_SAFE of ME_IM register is ‘1’.

The SAFE mode interrupt pending bit can be cleared only when the SAFE mode request is
deasserted by the MC_RGM (see the MC_RGM chapter for details on how to clear a SAFE
mode request). If the system is already in SAFE mode, any new SAFE mode request by the
MC_RGM also sets the interrupt pending bit |_SAFE. However, the SAFE mode interrupt

DoclD14629 Rev 9 191/888

Mode Entry Module (MC_ME) RM0017

8.45.4

8.4.6

8.4.7

192/888

pending bit is not set when the SAFE mode is entered by a software request (i.e.
programming of ME_MCTL register).

Mode Transition Complete interrupt

Whenever the system completes a mode transition fully (i.e. the S_MTRANS bit of ME_GS
register transits from ‘1’ to ‘0’), the interrupt pending bit I|_MTC of the ME_IS register is set,
and interrupt request is generated if the mask bit M_MTC of the ME_IM register is ‘1’. The
interrupt bit I_MTC is not set when entering low-power modes HALT and STOP in order to
avoid the same event requesting the exit of these low-power modes.

Peripheral Clock Gating

During all device modes, each peripheral can be associated with a particular clock gating
policy determined by two groups of peripheral configuration registers.

The run peripheral configuration registers ME_RUN_PCQO...7 are chosen only during the
software running modes DRUN, TEST, SAFE, and RUNO...3. All configurations are
programmable by software according to the needs of application. Each configuration register
contains a mode bit which determines whether or not a peripheral clock is to be gated. Run
configuration selection for each peripheral is done by the RUN_CFG bit field of the
ME_PCTLO...143 registers.

The low-power peripheral configuration registers ME_LP_PCQO0...7 are chosen only during the
low-power modes HALT, STOP, and STANDBY. All configurations are programmable by
software according to the needs of the application. Each configuration register contains a
mode bit which determines whether or not a peripheral clock is to be gated. Low-power
configuration selection for each peripheral is done by the LP_CFG bit field of the
ME_PCTLO...143 registers.

Any modifications to the ME_RUN_PCO...7, ME_LP_PCO0...7, and ME_PCTLO...143
registers do not affect the clock gating behavior until a new mode transition request is
generated.

Whenever the processor enters a debug session during any mode, the following occurs for
each peripheral:

e The clock is gated if the DBG_F bit of the associated ME_PCTLO...143 register is set.
Otherwise, the peripheral clock gating status depends on the RUN_CFG and LP_CFG
bits. Any further modifications of the ME_RUN_PCO...7, ME_LP_PCO...7, and
ME_PCTLO...143 registers during a debug session will take affect immediately without
requiring any new mode request.

Application Example

Figure 73 shows an example application flow for requesting a mode change and then waiting
until the mode transition has completed.

3

DoclD14629 Rev 9

RM0017 Mode Entry Module (MC_ME)

< START of mode change)

config
for target mode
okay?

write ME_<target mode>_MC,
ME_RUN_PCO0...7, ME_LP_PCO0...7,
and ME_PCTLO...143 registers

write ME_MCTL with target mode and
key

v

write ME_MCTL with target mode and
inverted key

¢<

start timer

S_MTRANS N
cleared?
. N
timer
expired?
stop timer
< mode change DONE) write ME_MCTL with current or SAFE

mode and key

v

write ME_MCTL with current or SAFE
mode and inverted key

Figure 73. MC_ME Application Example Flow Diagram

3

DoclD14629 Rev 9 193/888

Reset Generation Module (MC_RGM) RM0017

9

9.1

9.11

194/888

Reset Generation Module (MC_RGM)

Introduction

Overview

The reset generation module (MC_RGM) centralizes the different reset sources and
manages the reset sequence of the device. It provides a register interface and the reset
sequencer. The different registers are available to monitor and control the device reset
sequence. The reset sequencer is a state machine which controls the different phases
(PHASEO, PHASE1, PHASE?2, PHASE3, and IDLE) of the reset sequence and control the
reset signals generated in the system.

Figure 74 depicts the MC_RGM block diagram.

3

DoclD14629 Rev 9

RMO0017

Reset Generation Module (MC_RGM)

power-on — g

1.2 V low-voltage detected (power
domain #0)

1.2 V low-voltage detected (power
domain #1)

software watchdog timer

2.7 V low-voltage detected

RESET [}———

JTAG initiated reset

debug control core reset
software reset

checkstop reset

FMPLL fail [

FXOSC frequency lower than
reference

CMU clock frequency
higher/lower than reference
4.5V low-voltage detected
code or data flash fatal error

PA[8] and PA[9] [———

MC_RGM

Registers

Platform Interface

MC_ME

MC_CGM

Destructive
Reset Filter

Reset
State
Machine

Functional
Reset Filter

peripherals

core

Boot Mode
Capture

SSCM

Figure 74. MC_RGM block diagram

3

DoclD14629 Rev 9

195/888

Reset Generation Module (MC_RGM) RM0017

9.1.2

9.1.3

196/888

Features

The MC_RGM contains the functionality for the following features:

‘Destructive’ resets management
‘Functional’ resets management
Signaling of reset events after each reset sequence (reset status flags)

Conversion of reset events to SAFE mode or interrupt request events (for further mode
details, please see the MC_ME chapter)

Short reset sequence configuration
Bidirectional reset behavior configuration

Selection of alternate boot via the backup SRAM on STANDBY mode exit (for further
mode details, please see the MC_ME chapter)

Boot mode capture on RESET deassertion

Modes of operation

The different reset sources are organized into two families: ‘destructive’ and ‘functional’.

A ‘destructive’ reset source is associated with an event related to a critical - usually
hardware - error or dysfunction. When a ‘destructive’ reset event occurs, the full reset
sequence is applied to the device starting from PHASEO. This resets the full device
ensuring a safe start-up state for both digital and analog modules. ‘Destructive’ resets
are

— Power-on reset

— 1.2 V low-voltage detected (power domain #0)

— 1.2 V low-voltage detected (power domain #1)

— Software watchdog timer

— 2.7V low-voltage detected
A ‘functional’ reset source is associated with an event related to a less-critical - usually
non-hardware - error or dysfunction. When a ‘functional’ reset event occurs, a partial
reset sequence is applied to the device starting from PHASEL. In this case, most digital
modules are reset normally, while analog modules or specific digital modules’ (e.g.

debug modules, flash modules) state is preserved. ‘Functional’ resets are
— External reset

— JTAG initiated reset

— Debug control core reset

— Software reset

— Checkstop reset

— FMPLL fail

— FXOSC frequency lower than reference

— CMU clock frequency higher/lower than reference
— 4.5V low-voltage detected

— Code or data flash fatal error

When a reset is triggered, the MC_RGM state machine is activated and proceeds through
the different phases (i.e. PHASERN states). Each phase is associated with a particular device
reset being provided to the system. A phase is completed when all corresponding phase
completion gates from either the system or internal to the MC_RGM are acknowledged. The
device reset associated with the phase is then released, and the state machine proceeds to

DoclD14629 Rev 9 ‘Yl

RMO0017

Reset Generation Module (MC_RGM)

the next phase up to entering the IDLE phase. During this entire process, the MC_ME state
machine is held in RESET mode. Only at the end of the reset sequence, when the IDLE
phase is reached, does the MC_ME enter the DRUN mode.

Alternatively, it is possible for software to configure some reset source events to be converted
from a reset to either a SAFE mode request issued to the MC_ME or to an interrupt issued
to the core (see Section 9.3.1.4: Destructive Event Reset Disable Register (RGM_DERD)
and Section 9.3.1.6: Destructive Event Alternate Request Register (RGM_DEAR) for
‘destructive’ resets and Section 9.3.1.3: Functional Event Reset Disable Register
(RGM_FERD) and Section 9.3.1.5: Functional Event Alternate Request Register
(RGM_FEAR) for ‘functional’ resets).

9.2 External signal description
The MC_RGM interfaces to the bidirectional reset pin RESET and the boot mode pins PA[8]
and PA[9].
9.3 Memory map and register definition
Table 78. MC_RGM register description
Access
Address Name Description Size Location
Supervisor
OXC3FE_4000 |RGM_FES Functional Event Status half-word | read/write®) | on page 200
OXC3FE_4002 |RGM_DES Destructive Event Status half-word | read/write® | on page 201
OXC3FE_4004 |RGM_FERD | Functional Event Reset Disable half-word | read/write® | on page 202
OxC3FE_4006 |RGM_DERD | Destructive Event Reset Disable half-word read on page 204
OxC3FE_4010 |RGM_FEAR |Functional Event Alternate Request half-word | read/write | on page 205
OxC3FE_4012 | RGM_DEAR | Destructive Event Alternate Request half-word read on page 206
OxC3FE_4018 |RGM_FESS Functional Event Short Sequence half-word | read/write | on page 207
OXC3FE_401A |RGM_STDBY |STANDBY Reset Sequence half-word | read/write | on page 209
OXC3FE_401C |RGM_FBRE | Functional Bidirectional Reset Enable half-word | read/write | on page 209

1. individual bits cleared on writing ‘1’

2. write once:

Note:

3

‘0’ = disable, ‘1’ = enable.

Any access to unused registers as well as write accesses to read-only registers will:
. Not change register content
* Cause a transfer error

DoclD14629 Rev 9 197/888

RMO0017

Reset Generation Module (MC_RGM)

y map

Table 79. MC_RGM memor

_ Q — _ |9 _ — _ _ _ _
3 = ovil 4 1W_ 0dd ZTdAT 4 1W_ ovilr d 0dd <ZTAA1 a OVIL dv 0dd <ZTAA1 dv
— o - —_ |9 — — _ — _ —
3| 8 3400 4 1W_ 1dd ZTdAT 4 1W_ 3400 d Tdd ZTAA1 a 3400 oV Tdd ZTAAT &V
— o —_ o —_ — — —
3| R 140S 4 1W_ IMS 4 1W_ 140S d 1IMS d 140S dv 1IMS oV
_ |l o _ [8) _ _ _ _
S| 8| dOLSHHD 4 _W_ LZdAN1 4 _W_ dOl1SMHD ad /2¢ANnT d dOL1SHHD dVv L2AN1 dv
_ o _ —
3| K| T1dwd 4 M © T1dINd a © T1dINd dVv ©
— - | o — — — -
S| &|910 nwo 4 _W_ © d70 NND d © d70 NND 4V ©
_ — | o — — — —
| &|TH4 NND 4 1W_ © TH4 NND a © TH4 NND dVv ©
—] _ —
o | SYani 4 1W_ © SYdA1 d © SYAAT dv ©
_ 3 _ —
~| & HSVY1d 4 1W_ © HSY1d d © 3 HSVY1d dv o
>
@
o| & o o o o a o o
w | g o o o o o o
Nl & () o o o o o
™| 9 o o o o o o
~ |8 o o o () o o
T o o o o o o
— [&] — [&] — —
o| & dx3 4 M d0d 4 M dx3 d © dX3 dv ©
4 = 04 = 24 4 04 = 14
)
€ I~ _| I3 _lo 'y I
i S5 S SE Sk s% s
z oo O O ON on
Xuw xao Xu xono Xru xono
A L L L L L
%] o <t [ee] O o
¢ %3S & 8 ®S :mS ;g
38T 2 &% 89185
> S s) s) S S

DoclD14629 Rev 9

198/888

RM0017 Reset Generation Module (MC_RGM)
Table 79. MC_RGM memory map(Continued)
0 1 2 3 | 27| 5 6 7 8 9 | 10 | 11 | 12 | 13 | 14 | 15
Address Name
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31
OXC3FE reserved
_4014
O0xC3FE . . %
RGM x P E
4018 _ & T w0 E 6| - 5 % w o
FESS/|R|W |0 |0 |0|0|0]|O0|2 | L |X x
| < [a) I T wn o <
| > 2 2 = I =
RGM_ | | 9 3|2 |S |8 |99 9|7
STDB 0 0[S0 |xla|?|o|a
%) ' ! %) 0 |0
Y 0 & %]
w
b=
<
&
o
¥
.
R| O 0 0 0 0 0 0 0 g 0 0 0 0 0 0 0
x
H
|_
o
o
m
w
OXC3FE 24 4 | x o
X T - —
_401C R|@ [o|ololo|olo|d|8|%]8 |3 |2 L|¥|¢
RGM_ o' < |2 | 5 1ol|lo | &
1 > 2 = X e} 5
FBRE @ o T B = T = A R B B
] o' w' OI O | u OI w | w | W
w o |0 | W W o |W|® |0 |®
0 | m)
O0xC3FE
4020
reserved
OxC3FE
_7FFC
9.3.1 Register descriptions

3

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or
8-bit bytes. The bytes are ordered according to big endian. For example, the RGM_STDBY
register may be accessed as a word at address OXC3FE_4018, as a half-word at address
OxC3FE_401A, or as a byte at address OXxC3FE_401B.

DoclD14629 Rev 9 199/888

Reset Generation Module (MC_RGM) RM0017

9.3.1.1 Functional Event Status Register (RGM_FES)

Address OXxC3FE_4000 Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R aE 5
& é 2597 g Lz | ¢
0 0 0 0 0 0 2 o) o) =
I-IJI d BI = S E % (n| UI i
w Gl ow O | 9 w! O | w w w
L LL LL
W| wilc wlc | wlc | wic | wlc | wlc | wic | wlc | wic | wilc
POR O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 75. Functional Event Status Register (RGM_FES)

This register contains the status of the last asserted functional reset sources. It can be
accessed in read/write on either supervisor mode or test mode. Register bits are cleared on
write ‘1.

Table 80. Functional Event Status Register (RGM_FES) field descriptions

Field Description

F_EXR Flag for External Reset

0 No external reset event has occurred since either the last clear or the last destructive reset
assertion

1 An external reset event has occurred

F_FLASH Flag for code or data flash fatal error

0 No code or data flash fatal error event has occurred since either the last clear or the last
destructive reset assertion

1 A code or data flash fatal error event has occurred

F_LVvD45 Flag for 4.5 V low-voltage detected

0 No 4.5V low-voltage detected event has occurred since either the last clear or the last
destructive reset assertion
1 A 4.5V low-voltage detected event has occurred

F_CMU_FHL | Flag for CMU clock frequency higher/lower than reference

0 No CMU clock frequency higher/lower than reference event has occurred since either the last
clear or the last destructive reset assertion
1 A CMU clock frequency higher/lower than reference event has occurred

F_CMU_OLR |Flag for FXOSC frequency lower than reference

0 No FXOSC frequency lower than reference event has occurred since either the last clear or the
last destructive reset assertion

1 A FXOSC frequency lower than reference event has occurred

F_FMPLL Flag for FMPLL fail
0 No FMPLL fail event has occurred since either the last clear or the last destructive reset assertion
1 A FMPLL fail event has occurred

F_CHKSTOP | Flag for checkstop reset

0 No checkstop reset event has occurred since either the last clear or the last destructive reset
assertion

1 A checkstop reset event has occurred

3

200/888 DoclD14629 Rev 9

RM0017 Reset Generation Module (MC_RGM)

Table 80. Functional Event Status Register (RGM_FES) field descriptions(Continued)

Field Description

F_SOFT Flag for software reset

0 No software reset event has occurred since either the last clear or the last destructive reset
assertion

1 A software reset event has occurred

F_CORE Flag for debug control core reset

0 No debug control core reset event has occurred since either the last clear or the last destructive
reset assertion

1 A debug control core reset event has occurred; this event can only be asserted when the
DBCRO[RST] field is set by an external debugger. See the "Debug Support” chapter of the core
reference manual for more details.

F_JTAG Flag for JTAG initiated reset

0 No JTAG initiated reset event has occurred since either the last clear or the last destructive reset
assertion

1 A JTAG initiated reset event has occurred

9.3.1.2 Destructive Event Status Register (RGM_DES)

Address OXC3FE_4002 Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R — o
~ g | g
% N E [|
N N
a 0 0 0 0 0 0 0 0 0 0 0 Z| ml = =
w L L 3| El
L L
W| wlc wlc | wlc | wlc | wlc
POR 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 76. Destructive Event Status Register (RGM_DES)

This register contains the status of the last asserted destructive reset sources. It can be
accessed in read/write on either supervisor mode or test mode. Register bits are cleared on
write ‘1.

Table 81. Destructive Event Status Register (RGM_DES) field descriptions

Field Description

F_POR Flag for Power-On reset
0 No power-on event has occurred since the last clear (due to either a software clear or a low-voltage

detection)
1 A power-on event has occurred

F_LVvD27 |Flag for 2.7 V low-voltage detected
0 No 2.7 V low-voltage detected event has occurred since either the last clear or the last power-on

reset assertion
1 A 2.7V low-voltage detected event has occurred

3

DoclD14629 Rev 9 201/888

Reset Generation Module (MC_RGM) RM0017

Table 81. Destructive Event Status Register (RGM_DES) field descriptions(Continued)

Field Description

F_SWT Flag for software watchdog timer
0 No software watchdog timer event has occurred since either the last clear or the last power-on

reset assertion
1 A software watchdog timer event has occurred

F_LVD12 P |Flag for 1.2 V low-voltage detected (power domain #1)
D1 0 No 1.2V low-voltage detected (power domain #1) event has occurred since either the last clear or

the last power-on reset assertion
1 A 1.2V low-voltage detected (power domain #1) event has occurred

F_LVD12_ P |Flag for 1.2 V low-voltage detected (power domain #0)
DO 0 No 1.2V low-voltage detected (power domain #0) event has occurred since either the last clear or

the last power-on reset assertion
1 A 1.2V low-voltage detected (power domain #0) event has occurred

Note: The F_POR flag is automatically cleared on a 1.2 V low-voltage detected (power domain #0
or #1) or a 2.7 V low-voltage detected. This means that if the power-up sequence is not
monotonic (i.e the voltage rises and then drops enough to trigger a low-voltage detection),
the F_POR flag may not be set but instead the <register>F_LVD12_PDO,
<register>F_LVD12 PD1, or <register>F_LVD27 flag is set on exiting the reset sequence.
Therefore, if the F_POR, <register>F_LVD12_PDO, <register>F_LVD12_PD1, or
<register>F_LVD27 flags are set on reset exit, software should interpret the reset cause as

power-on.

Note: In contrast to all other reset sources, the 1.2 V low-voltage detected (power domain #0)
event is captured on its deassertion. Therefore, the status bit F_LvVD12_ PDO is also
asserted on the reset’s deassertion. In case an alternate event is selected, the SAFE mode
or interrupt request are similarly asserted on the reset’s deassertion.

9.3.1.3 Functional Event Reset Disable Register (RGM_FERD)

Address OXC3FE_4004 Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R o
ad il 5 — I(2 T
I o] LL w
%)
Slolojololo|o |2 |8 (%%)z |23 |z]|8
o) - T T =T T
W o
POR © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 77. Functional Event Reset Disable Register (RGM_FERD)

This register provides dedicated bits to disable functional reset sources.When a functional
reset source is disabled, the associated functional event will trigger either a SAFE mode
reqguest or an interrupt request (see Section 9.3.1.5: Functional Event Alternate Request
Register (RGM_FEAR)). It can be accessed in read/write in either supervisor mode or test
mode. It can be accessed in read only in user mode. Each byte can be written only once after

power-on reset.

S74

202/888 DoclD14629 Rev 9

RMO0017

Reset Generation Module (MC_RGM)

Table 82. Functional Event Reset Disable Register (RGM_FERD) field descriptions

Field

Description

D_EXR

Disable External Reset

0 An external reset event triggers a reset sequence
1 An external reset event generates a SAFE mode request

D_FLASH

Disable code or data flash fatal error

0 A code or data flash fatal error event triggers a reset sequence

1 A code or data flash fatal error event generates either a SAFE mode or an interrupt request
depending on the value of RGM_FEAR.AR_FLASH

D_LVD45

Disable 4.5 V low-voltage detected

0 A 4.5V low-voltage detected event triggers a reset sequence

1 A 4.5V low-voltage detected event generates either a SAFE mode or an interrupt request
depending on the value of RGM_FEAR.AR_LVD45

D_CMU_FHL

Disable CMU clock frequency higher/lower than reference

0 A CMU clock frequency higher/lower than reference event triggers a reset sequence

1 A CMU clock frequency higher/lower than reference event generates either a SAFE mode or an
interrupt request depending on the value of RGM_FEAR.AR_CMU_FHL

D_CMU_OLR

Disable FXOSC frequency lower than reference

0 A FXOSC frequency lower than reference event triggers a reset sequence

1 A FXOSC frequency lower than reference event generates either a SAFE mode or an interrupt
request depending on the value of RGM_FEAR.AR_CMU_OLR

D_FMPLL

Disable FMPLL fail

0 A FMPLL fail event triggers a reset sequence

1 A FMPLL fail event generates either a SAFE mode or an interrupt request depending on the
value of RGM_FEAR.AR_FMPLL

D_CHKSTOP

Disable checkstop reset

0 A checkstop reset event triggers a reset sequence

1 Acheckstop reset event generates either a SAFE mode or an interrupt request depending on the
value of RGM_FEAR.AR_CHKSTOP

D_SOFT

Disable software reset

0 A software reset event triggers a reset sequence

1 A software reset event generates either a SAFE mode or an interrupt request depending on the
value of RGM_FEAR.AR_SOFT

D_CORE

Disable debug control core reset

0 A debug control core reset event triggers a reset sequence

1 A debug control core reset event generates either a SAFE mode or an interrupt request
depending on the value of RGM_FEAR.AR_CORE

D_JTAG

Disable JTAG initiated reset

0 A JTAG initiated reset event triggers a reset sequence

1 A JTAG initiated reset event generates either a SAFE mode or an interrupt request depending
on the value of RGM_FEAR.AR_JTAG

3

DocID14629 Rev 9 203/888

Reset Gener

ation Module (MC_RGM) RM0017

9.3.14 Destructive Event Reset Disable Register (RGM_DERD)

Address OXC3FE_4006 Access: Read
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R a | 8
g E Sy
N N
0 0 0 0 0 0 0 0 0 0 0 0 zl 2 = =
o | @ ZI Bl
[} [
W
POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 78. Destructive Event Reset Disable Register (RGM_DERD)
This register provides dedicated bits to disable particular destructive reset sources. When a
destructive reset source is disabled, the associated destructive event will trigger either a safe
mode request or an interrupt request (see Section 9.3.1.6: Destructive Event Alternate
Request Register (RGM_DEAR).
Table 83. Destructive Event Reset Disable Register (RGM_DERD) field descriptions
Field Description
D_LvD27 |Disable 2.7 V low-voltage detected
0 A 2.7 Vlow-voltage detected event triggers a reset sequence
1 A 2.7V low-voltage detected event generates either a SAFE mode or an interrupt request
depending on the value of RGM_DEAR.AR_LVD27
D_SWT Disable software watchdog timer
0 A software watchdog timer event triggers a reset sequence
1 A software watchdog timer event generates either a SAFE mode or an interrupt request depending
on the value of RGM_DEAR.
D_LVD12 P |Disable 1.2 V low-voltage detected (power domain #1)
D1 0 A 1.2V low-voltage detected (power domain #1) event triggers a reset sequence
1 A 1.2V low-voltage detected (power domain #1) event generates either a SAFE mode or an
interrupt request depending on the value of RGM_DEAR.AR_LVD12_PD1
D_LVvD12_P |Disable 1.2 V low-voltage detected (power domain #0)
Do 0 A 1.2V low-voltage detected (power domain #0) event triggers a reset sequence
1 A 1.2V low-voltage detected (power domain #0) event generates either a SAFE mode or an
interrupt request depending on the value of RGM_DEAR.AR_LVD12_PDO0O

204/888

3

DoclD14629 Rev 9

RM0017 Reset Generation Module (MC_RGM)
9.3.1.5 Functional Event Alternate Request Register (RGM_FEAR)
Address OXxC3FE_4010 Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R o
14 EI 5 - I9 n
X (% @ TR (@) — 0 8 ‘S:J O]
wilo|lojo|o|oO0]|]oO0]|< |2 ! e 2o | o |2
3 S) o) S I | =
% " ~ g (2) Y ©, o ° o
o o o x < o ©
< | < ||| < | < < | <
W <<
POR O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 79. Functional Event Alternate Request Register (RGM_FEAR)

This register defines an alternate request to be generated when a reset on a functional event
has been disabled. The alternate request can be either a SAFE mode request to MC_ME or
an interrupt request to the system. It can be accessed in read/write in either supervisor mode
or test mode. It can be accessed in read only in user mode.

Table 84. Functional Event Alternate Request Register (RGM_FEAR) field descriptions

Field

Description

AR_EXR

Alternate Request for External Reset

0 Generate a SAFE mode request on an external reset event if the reset is disabled
1 Generate an interrupt request on an external reset event if the reset is disabled

AR_FLASH

Alternate Request for code or data flash fatal error
0 Generate a SAFE mode request on a code or data flash fatal error event if the reset is

disabled
1 Generate an interrupt request on a code or data flash fatal error event if the reset is disabled

AR_LVDA45

Alternate Request for 4.5 V low-voltage detected
0 Generate a SAFE mode request on a 4.5 V low-voltage detected event if the reset is

disabled
1 Generate an interrupt request on a 4.5 V low-voltage detected event if the reset is disabled

AR_CMU_FHL

Alternate Request for CMU clock frequency higher/lower than reference

0 Generate a SAFE mode request on a CMU clock frequency higher/lower than reference
event if the reset is disabled

1 Generate an interrupt request on a CMU clock frequency higher/lower than reference event
if the reset is disabled

AR_CMU_OLR

Alternate Request for FXOSC frequency lower than reference

0 Generate a SAFE mode request on a FXOSC frequency lower than reference event if the
reset is disabled

1 Generate an interrupt request on a FXOSC frequency lower than reference event if the
reset is disabled

For the case when RGM_FERD[D_CMU_OLR] =1 & RGM_FEAR[AR_CMU_OLR] =1, an
RGM interrupt will not be generated for an FXOSC failure when the system clock = FXOSC
as there will be no system clock to execute the interrupt service routine. However, the
interrupt service routine will be executed if the FXOSC recovers at some point. The
recommended use case for this feature is when the system clock = FIRC or FMPLL.

3

DoclD14629 Rev 9 205/888

Reset Generation Module (MC_RGM) RM0017

Table 84. Functional Event Alternate Request Register (RGM_FEAR) field

Field Description

AR_FMPLL Alternate Request for FMPLL fail

0 Generate a SAFE mode request on a FMPLL fail event if the reset is disabled
1 Generate an interrupt request on a FMPLL fail event if the reset is disabled

AR_CHKSTOP Alternate Request for checkstop reset
0 Generate a SAFE mode request on a checkstop reset event if the reset is disabled
1 Generate an interrupt request on a checkstop reset event if the reset is disabled

AR_SOFT Alternate Request for software reset
0 Generate a SAFE mode request on a software reset event if the reset is disabled
1 Generate an interrupt request on a software reset event if the reset is disabled

AR_CORE Alternate Request for debug control core reset
0 Generate a SAFE mode request on a debug control core reset event if the reset is disabled
1 Generate an interrupt request on a debug control core reset event if the reset is disabled

AR_JTAG Alternate Request for JTAG initiated reset
0 Generate a SAFE mode request on a JTAG initiated reset event if the reset is disabled
1 Generate an interrupt request on a JTAG initiated reset event if the reset is disabled

9.3.1.6 Destructive Event Alternate Request Register (RGM_DEAR)

Figure 80. Destructive Event Alternate Request Register (RGM_DEAR)

Address OXC3FE_4012 Access: Read
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 3 | 3
~ o o
|_
a < o o
0 0 0 0 0 0 0 0 0 0 0 o3| ® 3|2
o' S R
< | I
14 14
< <
w
POR O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register defines an alternate request to be generated when a reset on a destructive
event has been disabled. The alternate request can be either a SAFE mode request to
MC_ME or an interrupt request to the system.

Table 85. Destructive Event Alternate Request Register (RGM_DEAR) field descriptions

Field Description

AR_LVD27 |Alternate Request for 2.7 V low-voltage detected
0 Generate a SAFE mode request on a 2.7 V low-voltage detected event if the reset is disabled
1 Generate an interrupt request on a 2.7 V low-voltage detected event if the reset is disabled

AR_SWT | Alternate Request for software watchdog timer
0 Generate a SAFE mode request on a software watchdog timer event if the reset is disabled
1 Generate an interrupt request on a software watchdog timer event if the reset is disabled

206/888 DoclD14629 Rev 9 ‘Yl

RM0017 Reset Generation Module (MC_RGM)

Table 85. Destructive Event Alternate Request Register (RGM_DEAR) field

Field Description

AR_LVD12_ | Alternate Request for 1.2 V low-voltage detected (power domain #1)
PD1 0 Generate a SAFE mode request on a 1.2 V low-voltage detected (power domain #1) event if the

reset is disabled
1 Generate an interrupt request on a 1.2 V low-voltage detected (power domain #1) event if the reset

is disabled

AR_LVD12_ | Alternate Request for 1.2 V low-voltage detected (power domain #0)
PDO 0 Generate a SAFE mode request on a 1.2 V low-voltage detected (power domain #0) event if the

reset is disabled
1 Generate an interrupt request on a 1.2 V low-voltage detected (power domain #0) event if the reset

is disabled

9.3.1.7 Functional Event Short Sequence Register (RGM_FESS)

Address OXxC3FE_4018 Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R o
x T |5 2l
< 12| |o|l2|la |6 |Y|o
wilojlojojojofo|< |2 |S|J|E|F|o |0 |8
7] Y " 5 3) ©, a2 2 i
Wl 919 |a |2 a9
] 2 %) n " n
W 0]
POR © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 81. Functional Event Short Sequence Register (RGM_FESS)

This register defines which reset sequence will be done when a functional reset sequence is
triggered.The functional reset sequence can either start from PHASE1 or from PHASE3,

skipping PHASE1 and PHASE?2.
Note: This could be useful for fast reset sequence, for example to skip flash reset.

It can be accessed in read/write in either supervisor mode or test mode. It can be accessed
in read in user mode.

Table 86. Functional Event Short Sequence Register (RGM_FESS) field descriptions

Field Description

SS_EXR | Short Sequence for External Reset

0 The reset sequence triggered by an external reset event will start from PHASE1

1 The reset sequence triggered by an external reset event will start from PHASES, skipping
PHASE1 and PHASE2

SS_FLASH | Short Sequence for code or data flash fatal error

0 The reset sequence triggered by a code or data flash fatal error event will start from PHASE1

1 The reset sequence triggered by a code or data flash fatal error event will start from PHASES3,
skipping PHASE1 and PHASE?2

3

DoclD14629 Rev 9 207/888

Reset Generation Module (MC_RGM)

RMO0017

Table 86. Functional Event Short Sequence Register (RGM_FESS) field descriptions(Continued)

Field Description
SS_LVD45 | Short Sequence for 4.5 V low-voltage detected
0 The reset sequence triggered by a 4.5 V low-voltage detected event will start from PHASE1
1 The reset sequence triggered by a 4.5 V low-voltage detected event will start from PHASES,
skipping PHASE1 and PHASE?2
SS_CMU_F | Short Sequence for CMU clock frequency higher/lower than reference
HL 0 The reset sequence triggered by a CMU clock frequency higher/lower than reference event will
start from PHASE1
1 The reset sequence triggered by a CMU clock frequency higher/lower than reference event will
start from PHASES3, skipping PHASE1 and PHASE2
SS_CMU_O | Short Sequence for FXOSC frequency lower than reference
LR 0 The reset sequence triggered by a FXOSC frequency lower than reference event will start from
PHASE1
1 The reset sequence triggered by a FXOSC frequency lower than reference event will start from
PHASES3, skipping PHASE1 and PHASE2
SS_FMPLL |Short Sequence for FMPLL fail
0 The reset sequence triggered by a FMPLL fail event will start from PHASE1
1 The reset sequence triggered by a FMPLL fail event will start from PHASES, skipping PHASE1
and PHASE2
SS_CHKST | Short Sequence for checkstop reset
oP 0 The reset sequence triggered by a checkstop reset event will start from PHASE1
1 The reset sequence triggered by a checkstop reset event will start from PHASES3, skipping
PHASE1 and PHASE2
SS_SOFT | Short Sequence for software reset
0 The reset sequence triggered by a software reset event will start from PHASE1
1 The reset sequence triggered by a software reset event will start from PHASE3, skipping PHASE1
and PHASE2
SS_CORE | Short Sequence for debug control core reset
0 The reset sequence triggered by a debug control core reset event will start from PHASE1
1 The reset sequence triggered by a debug control core reset event will start from PHASES3, skipping
PHASE1 and PHASE2
SS_JTAG | Short Sequence for JTAG initiated reset
0 The reset sequence triggered by a JTAG initiated reset event will start from PHASE1
1 The reset sequence triggered by a JTAG initiated reset event will start from PHASES3, skipping
PHASE1 and PHASE2
208/888 DoclD14629 Rev 9 Kys

RM0017 Reset Generation Module (MC_RGM)
9.3.1.8 STANDBY Reset Sequence Register (RGM_STDBY)
Address OXC3FE_401A Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
b=
R <
@,
o
i
%
0 0 0 0 0 0 0 0 % 0 0 0 0 0 0 0
x
""|
|_
0O
@]
m
W
reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 82. STANDBY Reset Sequence Register (RGM_STDBY)

This register defines the reset sequence to be applied on STANDBY mode exit. It can be
accessed in read/write in either supervisor mode or test mode. It can be accessed in read
only in user mode.

Table 87. STANDBY Reset Sequence Register (RGM_STDBY) field descriptions

Field Description
BOOT_ Boot from Backup SRAM indicator — This bit indicates whether the system will boot from backup
FROM_ SRAM or flash out of STANDBY exit.
BKP_RAM |0 Boot from default boot location on STANDBY exit
1 Boot from backup SRAM on STANDBY exit
Note: This register is reset on any enabled ‘destructive’ or ‘functional’ reset event.
9.3.1.9 Functional Bidirectional Reset Enable Register (RGM_FBRE)
Address OxC3FE_401C Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R & SEEE
T)
Wlojofolofolo|a | X |%5[5]|z |5k Hg Q
L)) E
om il BI g s EI % (Dl OI 'ﬂl
®) w w L
w 0 0 w | i W | @ o @
[} %) oM
POR O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 83. Functional Bidirectional Reset Enable Register (RGM_FBRE)

This register enables the generation of an external reset on functional reset. It can be
accessed in read/write in either supervisor mode or test mode. It can be accessed in read in
user mode.

3

DocID14629 Rev 9 209/888

Reset Generation Module (MC_RGM) RM0017

Table 88. Functional Bidirectional Reset Enable Register (RGM_FBRE) field descriptions

Field

Description

BE_EXR

Bidirectional Reset Enable for External Reset

0 RESET is asserted on an external reset event if the reset is enabled
1 RESET is not asserted on an external reset event

BE_FLASH

Bidirectional Reset Enable for code or data flash fatal error

0 RESET is asserted on a code or data flash fatal error event if the reset is enabled
1 RESET is not asserted on a code or data flash fatal error event

BE_LVD45

Bidirectional Reset Enable for 4.5 V low-voltage detected

0 RESET is asserted on a 4.5 V low-voltage detected event if the reset is enabled
1 RESET is not asserted on a 4.5 V low-voltage detected event

BE_CMU_F
HL

Bidirectional Reset Enable for CMU clock frequency higher/lower than reference

0 RESET is asserted on a CMU clock frequency higher/lower than reference event if the reset is
enabled
1 RESET is not asserted on a CMU clock frequency higher/lower than reference event

BE_CMU_O
LR

Bidirectional Reset Enable for FXOSC frequency lower than reference

0 RESET is asserted on a FXOSC frequency lower than reference event if the reset is enabled
1 RESET is not asserted on a FXOSC frequency lower than reference event

BE_FMPLL

Bidirectional Reset Enable for FMPLL fail

0 RESET is asserted on a FMPLL fail event if the reset is enabled
1 RESET is not asserted on a FMPLL fail event

BE_CHKST
oP

Bidirectional Reset Enable for checkstop reset

0 RESET is asserted on a checkstop reset event if the reset is enabled
1 RESET is not asserted on a checkstop reset event

BE_SOFT

Bidirectional Reset Enable for software reset

0 RESET is asserted on a software reset event if the reset is enabled
1 RESET is not asserted on a software reset event

BE_CORE

Bidirectional Reset Enable for debug control core reset

0 RESET is asserted on a debug control core reset event if the reset is enabled
1 RESET is not asserted on a debug control core reset event

BE_JTAG

Bidirectional Reset Enable for JTAG initiated reset

0 RESET is asserted on a JTAG initiated reset event if the reset is enabled
1 RESET is not asserted on a JTAG initiated reset event

9.4

94.1

210/888

Functional description

Reset state machine

The main role of MC_RGM is the generation of the reset sequence which ensures that the
correct parts of the device are reset based on the reset source event. This is summarized in
Table 89.

3

DoclD14629 Rev 9

RMO0017

Reset Generation Module (MC_RGM)

Table 89. MC_RGM reset implications

Source What Gets Reset External Reset Boot Mode
Assertion Capture
power-on reset all yes yes
‘destructive’ resets all except some clock/reset management yes yes
all except some clock/reset management and yes yes

external reset

debug

‘functional’ resets

all except some clock/reset management and
debug

programmable
@

programmable
@

shortened ‘functional’
resets®

flip-flops except some clock/reset management

program)mable(
1

program)mable(
2

1. the assertion of the external reset is controlled via the RGM_FBRE register

2. the boot mode is captured if the external reset is asserted

3. the short sequence is enabled via the RGM_FESS register

Note:

JTAG logic has its own independent reset control and is not controlled by the MC_RGM in
any way.

The reset sequence is comprised of five phases managed by a state machine, which ensures
that all phases are correctly processed through waiting for a minimum duration and until all
processes that need to occur during that phase have been completed before proceeding to

the next phase.

The state machine used to produce the reset sequence is shown in Figure 84.

3

DoclD14629 Rev 9

211/888

Reset Generation Module (MC_RGM) RM0017

power-on
or enabled
‘destructive’
reset PHASEQ

power-up has completed
fast internal RC oscillator (16 MHz) clock is running
duration > 3 fast internal RC oscillator (16 MHz) clock cycles
FIRC stable, VREG voltage okay done

enabled non-

shortened

external or

‘functional’
reset?

duration > 350 fast internal RC oscillator (16 MHz) clock cycles

enabled
shortened
external or
“functional’ reset

duration > 8 fast internal RC oscillator (16 MHz) clock cycles
code and data flash initialization done

duration > 40 fast internal RC oscillator (16 MHz) clock cycles
code and data flash initialization done
RESET released

Figure 84. MC_RGM state machine

3

212/888 DoclD14629 Rev 9

RM0017 Reset Generation Module (MC_RGM)
9.4.1.1 PHASEO phase
This phase is entered immediately from any phase on a power-on or enabled ‘destructive’
reset event. The reset state machine exits PHASEO and enters PHASE1 on verification of the
following:
e Power-up has completed
e Fastinternal RC oscillator (16 MHz) clock is running
e All enabled ‘destructive’ resets have been processed
e All processes that need to be done in PHASEO are completed
— FIRC stable, VREG voltage okay
e A minimum of 3 fast internal RC oscillator (16 MHz) clock cycles have elapsed since
power-up completion and the last enabled ‘destructive’ reset event
9.4.1.2 PHASEL phase
This phase is entered either on exit from PHASEO or immediately from PHASE2, PHASES3,
or IDLE on a non-masked external or ‘functional’ reset event if it has not been configured to
trigger a ‘short’ sequence. The reset state machine exits PHASE1 and enters PHASE?2 on
verification of the following:
e All enabled, non-shortened ‘functional’ resets have been processed
e A minimum of 350 fast internal RC oscillator (16 MHZz) clock cycles have elapsed since
the last enabled external or non-shortened ‘functional’ reset event
9.4.1.3 PHASE2 phase
This phase is entered on exit from PHASE1L. The reset state machine exits PHASE2 and
enters PHASE3 on verification of the following:
e All processes that need to be done in PHASE?2 are completed
— code and data flash initialization
e A minimum of 8 fast internal RC oscillator (16 MHz) clock cycles have elapsed since
entering PHASE?2
94.14 PHASE3 phase
This phase is a entered either on exit from PHASEZ2 or immediately from IDLE on an enabled,
shortened ‘functional’ reset event. The reset state machine exits PHASE3 and enters IDLE
on verification of the following:
e All processes that need to be done in PHASES3 are completed
— code and data flash initialization
e A minimum of 40 fast internal RC oscillator (16 MHz) clock cycles have elapsed since
the last enabled, shortened ‘functional’ reset event
9.4.1.5 IDLE phase

3

This is the final phase and is entered on exit from PHASE3. When this phase is reached, the
MC_RGM releases control of the system to the platform and waits for new reset events that
can trigger a reset sequence.

DoclD14629 Rev 9 213/888

Reset Generation Module (MC_RGM) RM0017

9.4.2

Note:

9.4.3

Note:

214/888

Destructive resets

A ‘destructive’ reset indicates that an event has occurred after which critical register or
memory content can no longer be guaranteed.

The status flag associated with a given ‘destructive’ reset event
(RGM_DES.F_<destructive reset> bit) is set when the ‘destructive’ reset is asserted and the
power-on reset is not asserted. It is possible for multiple status bits to be set simultaneously,
and it is software’s responsibility to determine which reset source is the most critical for the
application.

The ‘destructive’ reset can be optionally disabled by writing bit
RGM_DERD.D_<destructive reset>.

The RGM_DERD register can be written only once between two power-on reset events.

The device’s low-voltage detector threshold ensures that, when 1.2 V low-voltage detected
(power domain #0) is enabled, the supply is sufficient to have the destructive event correctly
propagated through the digital logic. Therefore, if a given ‘destructive’ reset is enabled, the
MC_RGM ensures that the associated reset event will be correctly triggered to the full
system. However, if the given ‘destructive’ reset is disabled and the voltage goes below the
digital functional threshold, functionality can no longer be ensured, and the reset may or may
not be asserted.

An enabled destructive reset will trigger a reset sequence starting from the beginning of
PHASEO.

External reset

The MC_RGM manages the external reset coming from RESET. The detection of a falling
edge on RESET will start the reset sequence from the beginning of PHASEL1.

The status flag associated with the external reset falling edge event (RGM_FES.F_EXR bit)
is set when the external reset is asserted and the power-on reset is not asserted.

The external reset can optionally be disabled by writing bit RGM_FERD.D_EXR.
The RGM_FERD register can be written only once between two power-on reset events.

An enabled external reset will normally trigger a reset sequence starting from the beginning
of PHASEL. Nevertheless, the RGM_FESS register enables the further configuring of the
reset sequence triggered by the external reset. When RGM_FESS.SS_EXR is set, the
external reset will trigger a reset sequence starting directly from the beginning of PHASES3,
skipping PHASE1 and PHASEZ2. This can be useful especially when an external reset should
not reset the flash.

The MC_RGM may also assert the external reset if the reset sequence was triggered by one

of the following:

e A power-on reset

e A‘destructive’ reset event

e An external reset event

e A‘functional’ reset event configured via the RGM_FBRE register to assert the external
reset

In this case, the external reset is asserted until the end of PHASES.

3

DoclD14629 Rev 9

RMO0017

Reset Generation Module (MC_RGM)

9.4.4

Note:

9.4.5

9.4.6

3

Functional resets

A ‘functional’ reset indicates that an event has occurred after which it can be guaranteed that
critical register and memory content is still intact.

The status flag associated with a given ‘functional’ reset event

(RGM_FES.F_<functional reset> bit) is set when the ‘functional’ reset is asserted and the
power-on reset is not asserted. It is possible for multiple status bits to be set simultaneously,
and it is software’s responsibility to determine which reset source is the most critical for the
application.

The ‘functional’ reset can be optionally disabled by software writing bit
RGM_FERD.D_<functional reset>.

The RGM_FERD register can be written only once between two power-on reset events.

An enabled functional reset will normally trigger a reset sequence starting from the beginning
of PHASEL. Nevertheless, the RGM_FESS register enables the further configuring of the
reset sequence triggered by a functional reset. When RGM_FESS.SS_<functional reset> is
set, the associated ‘functional’ reset will trigger a reset sequence starting directly from the
beginning of PHASE3, skipping PHASE1 and PHASE?2. This can be useful especially in case
a functional reset should not reset the flash module.

STANDBY entry sequence

STANDBY mode can be entered only when the MC_RGM is in IDLE. On STANDBY entry,
the MC_RGM moves to PHASEL. The minimum duration counter in PHASE1 does not start
until STANDBY mode is exited. On entry to PHASE1 due to STANDBY mode entry, the resets
for all power domains except power domain #0 are asserted. During this time, RESET is not
asserted as the external reset can act as a wakeup for the device.

There is an option to keep the flash inaccessible and in low-power mode on STANDBY exit
by configuring the DRUN mode before STANDBY entry so that the flash is in power-down or
low-power mode. If the flash is to be inaccessible, the PHASE2 and PHASES3 states do not
walit for the flash to complete initialization before exiting, and the reset to the flash remains
asserted.

See the MC_ME chapter for details on the STANDBY and DRUN modes.

Alternate event generation

The MC_RGM provides alternative events to be generated on reset source assertion. When
a reset source is asserted, the MC_RGM normally enters the reset sequence. Alternatively,
it is possible for each reset source event (except the power-on reset event) to be converted
from a reset to either a SAFE mode request issued to the MC_ME or to an interrupt request
issued to the core.

Alternate event selection for a given reset source is made via the RGM_F/DERD and
RGM_F/DEAR registers as shown in Table 90.

Table 90. MC_RGM alternate event selection

RGM_F/DERD RGM_F/DEAR Generated Event
Bit Value Bit Value
0 X reset
DoclD14629 Rev 9 215/888

Reset Generation Module (MC_RGM) RM0017

Table 90. MC_RGM alternate event selection(Continued)

RGM_F/DERD RGM_F/DEAR Generated Event
Bit Value Bit Value
1 0 SAFE mode request
1 1 interrupt request

The alternate event is cleared by deasserting the source of the request (i.e. at the reset
source that caused the alternate request) and also clearing the appropriate RGM_F/DES

status bit.

Note: Alternate requests (SAFE mode as well as interrupt requests) are generated
asynchronously.

Note: If a masked ‘destructive’ reset event which is configured to generate a SAFE mode/interrupt

request occurs during PHASEDQ, it is ignored, and the MC_RGM will not send any safe
mode/interrupt request to the MC_ME. The same is true for masked ‘functional’ reset events
during PHASEL.

9.4.7 Boot mode capturing

The MC_RGM samples PA[9:8] whenever RESET is asserted until five FIRC (16 MHz
internal RC oscillator) clock cycles before its deassertion edge. The result of the sampling is
used at the beginning of reset PHASE3 for boot mode selection and is retained after RESET
has been deasserted for subsequent boots after reset sequences during which RESET is not
asserted.

Note: In order to ensure that the boot mode is correctly captured, the application needs to apply
the valid boot mode value the entire time that RESET is asserted.

RESET can be asserted as a consequence of the internal reset generation. This will force
re-sampling of the boot mode pins. (See Table 89 for details.)

3

216/888 DoclD14629 Rev 9

RM0017 Power Control Unit (MC_PCU)
10 Power Control Unit (MC_PCU)

10.1 Introduction

10.1.1 Overview

3

The power control unit (MC_PCU) is used to reduce the overall SoC power consumption.
Power can be saved by disconnecting parts of the SoC from the power supply via a power
switching device. The SoC is grouped into multiple parts having this capability which are
called “power domains”.

When a power domain is disconnected from the supply, the power consumption is reduced
to zero in that domain. Any status information of such a power domain is lost. When re-
connecting a power domain to the supply voltage, the domain draws an increased current
until the power domain reaches its operational voltage.

Power domains are controlled on a device mode basis. For each mode, software can
configure whether a power domain is connected to the supply voltage (power-up state) or
disconnected (power-down state). Maximum power saving is reached by entering the
STANDBY mode.

On each mode change request, the MC_PCU evaluates the power domain settings in the
power domain configuration registers and initiates a power-down or a power-up sequence for
each individual power domain. The power-up/down sequences are handled by finite state
machines to ensure a smooth and safe transition from one power state to the other.

Exiting the STANDBY mode can only be done via a system wakeup event as all power
domains other than power domain #0 are in the power-down state.

In addition, the MC_PCU acts as a bridge for mapping the VREG peripheral to the MC_PCU
address space.

Figure 85 depicts the MC_PCU block diagram.

DoclD14629 Rev 9 217/888

Power Control Unit (MC_PCU) RMO0017

MC_PCU
<q¢—Pp MC_ME
FIRC l——— .
Registers
Platform Interface
VREG —————
§—P core
Power Domain
State Machines
power
domains < WKPU

< > mapped

peripheral

Mapped Module Interface

Figure 85. MC_PCU Block Diagram

10.1.2 Features

The MC_PCU includes the following features:
e support for 3 power domains

e support for device modes RESET, DRUN, SAFE, TEST, RUNO...3, HALT, STOP, and
STANDBY (for further mode details, please see the MC_ME chapter)

e power states updating on each mode change and on system wakeup
e ahandshake mechanism for power state changes thus guaranteeing operable voltage
e maps the VREG registers to the MC_PCU address space

10.1.3 Modes of Operation

The MC_PCU is available in all device modes.

3

218/888 DoclD14629 Rev 9

RMO0017 Power Control Unit (MC_PCU)
10.2 External Signal Description
The MC_PCU has no connections to any external pins.
10.3 Memory Map and Register Definition
Table 91. MC_PCU Register Description
Access
Address Name Description Size Location
Supervisor

OxC3FE_8000 |PCU_PCONFO Power Domain #0 Configuration word read on page 221

OxC3FE_8004 |PCU_PCONF1 Power Domain #1 Configuration word read on page 222

OxC3FE_8008 |PCU_PCONF2 Power Domain #2 Configuration word read/write on page 223

OxC3FE_8040 |PCU_PSTAT Power Domain Status Register word read on page 223

Note: Any access to unused registers as well as write accesses to read-only registers will:
. not change register content
* cause a transfer error
Table 92. MC_PCU Memory Map
o| 1|23 |27|5 |6 | 7| 8|9 |10]|1]|12|13]14]15
Address Name
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31
rROjO|lO|]O|]O|O|]O|O|O|]O|O]J]O|O|O0O]O0O]O
W
0x§030F0E PCU_PCONFO S o Flolaleslelz|wlr |
- RIojo|lm|[0|0|O|0|Z[5|5|5|5|2|%|8|e
5 ” I |||z |x|o|o |- |&
\W
rROjO|lO|]O|]O|O|]O|O|O|]O|O]J]O|O|O0O]O0O]O
W
OX§0302E PCU_PCONF1 ~ o H1212(1212 13 |% % |E
- RIojo|lm|0|0|O|0|Z|5|5|5|5|2|%|8|e
o ” I |zl |z|xz|o|o |- |&
W
rRYOj0O|lO|]O|]O|O|JO|O|O|]O|O]J]O|O|O]O0O]O
OxC3FE w
X PCU_PCONF2 -
8008 Rlojo[2|o0]0|la|0|r|a|lalgle|lz|lw|r|O
=) Jlz|z|Zz|Z|5 |t |n|&
i et </ S|D2|2|2|x|<|uw
w N) T | x|x|x||o|v|F
1S7 DoclD14629 Rev 9 219/888

Power Control Unit (MC_PCU) RMO0017

Table 92. MC_PCU Memory Map(Continued)

o|1|2)|3|27|5 |6 |7 |8]9 |10]11]|12]|13]|14] 15
Address Name
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31
OxC3FE
_800C
reserved
OxC3FE
_803C
rRO|O|O|lO|]O|O|]O|]O|]O|J]O|O]O|O]J]O|O0]O0
OxC3FE W
x PCU_PSTAT T 1o
8040 R|lolo|lo|o|o|o|o|o|o|lO|O|]O|O|a|a|B
a|a|a
W
0x044
reserved
0x07C
O0xC3FE
8080
VREG registers
O0xC3FE
_80FC
O0xC3FE
8100
reserved
OxXC3FE
_BFFC

10.3.1 Register Descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes
are ordered according to big endian. For example, the PDO field of the PCU_PSTAT register
may be accessed as a word at address 0xC3FE_8040, as a half-word at address
OxC3FE_8042, or as a byte at address 0xC3FE_8043.

3

220/888 DoclD14629 Rev 9

RMO0017

Power Control Unit (MC_PCU)

10.3.1.1

Power Domain #0 Configuration Register (PCU_PCONFO0)

Address OxC3FE_8000

Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 0 0 0 0 0 0 0 0
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R Q o — ™ N - o z w —
> =
oo |@m |0 |0 |[O o0 |Z |5 |5 |5 |5 |2|%Y|8]|a9
B 5 T2 |2 |2 |2 |8 |6 |E |
W
Reset O 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1
Figure 86. Power Domain #0 Configuration Register (PCU_PCONFO0)
This register defines for power domain #0 whether it is on or off in each device mode. As
power domain #0 is the always-on power domain (and includes the MC_PCU), none of its
bits are programmable. This register is available for completeness reasons.
Table 93. Power Domain Configuration Register Field Descriptions
Field Description
RST | Power domain control during RESET mode
0 Power domain off
1 Power domain on
TEST | Power domain control during TEST mode
0 Power domain off
1 Power domain on
SAFE | Power domain control during SAFE mode
0 Power domain off
1 Power domain on
DRUN | Power domain control during DRUN mode
0 Power domain off
1 Power domain on
RUNO | Power domain control during RUNO mode
0 Power domain off
1 Power domain on
RUN1 | Power domain control during RUN1 mode
0 Power domain off
1 Power domain on
RUN2 | Power domain control during RUN2 mode
0 Power domain off
1 Power domain on

3

DoclD14629 Rev 9

221/888

Power Control Unit (MC_PCU) RMO0017

Table 93. Power Domain Configuration Register Field Descriptions(Continued)

Field Description
RUN3 | Power domain control during RUN3 mode
0 Power domain off
1 Power domain on
HALT | Power domain control during HALT mode
0 Power domain off
1 Power domain on
STOP | Power domain control during STOP mode
0 Power domain off
1 Power domain on
STBYO |Power domain control during STANDBY mode
0 Power domain off
1 Power domain on
10.3.1.2 Power Domain #1 Configuration Register (PCU_PCONF1)
Address OXC3FE_8004 Access: Supervisor read
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R o o — ™ N - o z w —
> =
olo|@|o|o|S8|o|2|5|5|5[3|2|% 2|6
o 5 Tlz|lz|z|z |8 |5 |F &
w
Reset 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1

222/888

Figure 87. Power Domain #1 Configuration Register (PCU_PCONF1)

This register defines for power domain #1 whether it is on or off in each device mode. The bit
field description is the same as in Table 93. As the platform, clock generation, and mode
control reside in power domain #1, this power domain is only powered down during the
STANDBY mode. Therefore, none of the bits is programmable. This register is available for
completeness reasons.

The difference between PCU_PCONFO0 and PCU_PCONF1 is the reset value of the STBYO
bit: During the STANDBY mode, power domain #1 is disconnected from the power supply,
and therefore PCU_PCONF1.STBYO is always ‘0. Power domain #0 is always on, and
therefore PCU_PCONFO0.STBYO is ‘1.

For further details about STANDBY mode, please see Section 10.4.4.2: STANDBY Mode
Transition.

3

DoclD14629 Rev 9

RM0017 Power Control Unit (MC_PCU)

10.3.1.3 Power Domain #2 Configuration Register (PCU_PCONF2)

Address OXxC3FE_8008 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W
Reset 0 0

o
o
o
o
o
o
o
o
o
o
o
o
o
o

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R o a ™ N - o pd by
o[of[2lololglols]elelzlelz]uls]5

i 2 < | S |3|35|35|z| < | W

W 5 n T |z |z |2 |lE |6 |o|F
Reset O 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1

Figure 88. Power Domain #2 Configuration Register (PCU_PCONF2)

This register defines for power domain #2 whether it is on or off in each device mode. The bit
field description is the same as in Table 93.

10.3.1.4 Power Domain Status Register (PCU_PSTAT)

Address OXxC3FE_8040 Access: Supervisor read

0 1 2 3 4 5 10 1 12 13 14 15
R O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W
Reset 0 0

o
~
©
©

o
o
o
o
o
o
o
o
o
o
o
o
o
o

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R N - o
] [a] [a]
o o o
\W

[N
[
[

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 89. Power Domain Status Register (PCU_PSTAT)

This register reflects the power status of all available power domains.

Table 94. Power Domain Status Register (PCU_PSTAT) Field Descriptions

Field Description

PDn Power status for power domain #n

0 Power domain is inoperable
1 Power domain is operable

3

DocID14629 Rev 9 223/888

Power Control Unit (MC_PCU) RMO0017

10.4

104.1

10.4.2

10.4.3

10.4.4

10.4.4.1

224/888

Functional Description

General

The MC_PCU controls all available power domains on a device mode basis. The
PCU_PCONFn registers specify during which system/user modes a power domain is
powered up. The power state for each individual power domain is reflected by the bits in the
PCU_PSTAT register.

On a mode change, the MC_PCU evaluates which power domain(s) must change power
state. The power state is controlled by a state machine (FSM) for each individual power
domain which ensures a clean and safe state transition.

Reset / Power-On Reset

After any reset, the SoC will transition to the RESET mode during which all power domains
are powered up (see the MC_ME chapter). Once the reset sequence has been completed,
the DRUN mode is entered and software can begin the MC_PCU configuration.

MC_PCU Configuration

Per default, all power domains are powered in all modes other than STANDBY. Software can
change the configuration for each power domain on a mode basis by programming the
PCU_PCONFn registers.

Each power domain which is powered down is held in a reset state. Read/write accesses to
peripherals in those power domains will result in a transfer error.

Mode Transitions

On a mode change requested by the MC_ME, the MC_PCU evaluates the power
configurations for all power domains. It compares the settings in the PCU_PCONFn registers
for the new mode with the settings for the current mode. If the configuration for a power
domain differs between the modes, a power state change request is generated. These
requests are handled by a finite state machine to ensure a smooth and safe transition from
one power state to another.

DRUN, SAFE, TEST, RUNO...3, HALT, and STOP Mode Transition

The DRUN, SAFE, TEST, RUNO...3, HALT, and STOP modes allow an increased power
saving. The level of power saving is software-controllable via the settings in the
PCU_PCONFn registers for power domain #2 onwards. The settings for power domains #0
and #1 can not be changed. Therefore, power domains #0 and #1 remain connected to the
power supply for all modes beside STANDBY.

Figure 90 shows an example for a mode transition from RUNO to HALT and back, which will
result in power domain #2 being powered down during the HALT mode. In this case,
PCU_PCONF2.HALT is programmed to be ‘0’

When the MC_PCU receives the mode change request to HALT mode, it starts its power-
down phase. During the power-down phase, clocks are disabled and the reset is asserted
resulting in a loss of all information for this power domain.

Then the power domain is disconnected from the power supply (power-down state).

DoclD14629 Rev 9 ‘Yl

RMO0017

Power Control Unit (MC_PCU)

new mode
requested by ME

PSTAT.PD2 \ /

RUNO >< HALT >< RUNO

voltage in

power domain #2

current mode RUNO >< HALT >< RUNO
L\(_J\ — —
power-down power-down state
phase

Notes:

Not drawn to scale; PCONF2.RUNO = 1; PCONF2.HALT =0

Note:

10.4.4.2

3

Figure 90. MC_PCU Events During Power Sequences (non-STANDBY mode)

When the MC_PCU receives a mode change request to RUNO, it starts its power-up phase
if PCU_PCONF2.RUNO is ‘1’. The power domain is re-connected to the power supply, and
the voltage in power domain #2 will increase slowly. Once the voltage of power domain #2 is
within an operable range, its clocks are enabled, and its resets are deasserted (power-up
state).

It is possible that, due to a mode change, power-up is requested before a power domain
completed its power-down sequence. In this case, the information in that power domain is
lost.

STANDBY Mode Transition

STANDBY offers the maximum power saving. The level of power saving is software-
controllable via the settings in the PCU_PCONFn registers for power domain #2 onwards.
Power domain #0 stays connected to the power supply while power domain #1 is
disconnected from the power supply. Amongst others power domain #1 contains the platform
and the MC_ME. Therefore this mode differs from all other user/system modes.

Once STANDBY is entered it can only be left via a system wakeup. On exiting the STANDBY
mode, all power domains are powered up according to the settings in the PCU_PCONFn
registers, and the DRUN mode is entered. In DRUN mode, at least power domains #0 and
#1 are powered.

Figure 91 shows an example for a mode transition from RUNO to STANDBY to DRUN. All
power domains which have PCU_PCONFn.STBYO cleared will enter power-down phase. In
this example only power domain #1 will be disabled during STANDBY mode.

When the MC_PCU receives the mode change request to STANDBY mode it starts the power
down phase for power domain #1. During the power down phase, clocks are disabled and
reset is asserted resulting in a loss of all information for this power domain. Then the power
domain is disconnected from the power supply (power-down state).

DoclD14629 Rev 9 225/888

Power Control Unit (MC_PCU) RMO0017

new mode
requested by ME

PSTAT.PD1 \ /

RUNO ><STAN DBY >< Mode set due to reset being asserted to power domain #1

power domain #1

wakeup request / \

voltage in (

current mode RUNO STANDBY X DRUN
I
power-down power-down state
phase
Notes:

Not drawn to scale; PCONF1.RUNO = 1; PCONF1.STBY0 =0

Note:

10.4.4.3

10.5

10.6

10.6.1

226/888

Figure 91. MC_PCU Events During Power Sequences (STANDBY mode)

When the MC_PCU receives a system wakeup request, it starts the power-up phase. The
power domain is re-connected to the power supply and the voltage in power domain #1 will
increase slowly. Once the voltage is in an operable range, clocks are enabled and the reset
is be deasserted (power-up state).

It is possible that due to a wakeup request, power-up is requested before a power domain
completed its power-down sequence. In this case, the information in that power domain is
lost.

Power Saving for Memories During STANDBY Mode

All memories which are not powered down during STANDBY mode automatically enter a
power saving state. No software configuration is required to enable this power saving state.
While a memory is residing in this state an increased power saving is achieved. Data in the
memories is retained.

Initialization Information

To initialize the MC_PCU, the registers PCU_PCONF2... should be programmed. After
programming is done, those registers should no longer be changed.

Application Information

STANDBY Mode Considerations

STANDBY offers maximum power saving possibility. But power is only saved during the time
a power domain is disconnected from the supply. Increased power is required when a power

DoclD14629 Rev 9 ‘Yl

RMO0017

Power Control Unit (MC_PCU)

3

domain is re-connected to the power supply. Additional power is required during restoring the
information (e.g. in the platform). Care should be taken that the time during which the SoC is
operating in STANDBY mode is significantly longer than the required time for restoring the
information.

DoclD14629 Rev 9 227/888

Voltage Regulators and Power Supplies RMO0017

11

11.1

11.1.1

11.1.2

11.1.3

228/888

Voltage Regulators and Power Supplies

Voltage regulators

The power blocks provide a 1.2 V digital supply to the internal logic of the device. The main
supply is (3.3 V-5 V + 10%) and digital/regulated output supply is (1.2 V £ 10%). The
voltage regulator used in SPC560Bx and SPC560Cx comprises three regulators.

e High power regulator (HPREG)
e Low power regulator (LPREG)
e Ultra low power regulator (ULPREG)

The HPREG and LPREG regulators are switched off during STANDBY mode to save
consumption from the regulator itself. In STANDBY mode, the supply is provided by the
ULPREG regulator.

In STOP mode, the user can configure the HPREG regulator to switch-off (Refer to MC_ME
chapter). In this case, when current is low enough to be handled by LPREG alone, the
HPREG regulator is switch-off and the supply is provided by the LPREG regulator.

The internal voltage regulator requires an external capacitance (CREG) to be connected to
the device in order to provide a stable low voltage digital supply to the device. Capacitances
should be placed on the board as near as possible to the associated pins.

The regulator has two digital domains, one for the high power regulator (HPREG) and the
low power regulator (LPREG) called “High Power domain” and another one for the ultra low
power regulator (ULPREG) called “Standby domain.” For each domain there is a low voltage
detector for the 1.2 V output voltage. Additionally there are two low voltage detectors for the
main/input supply with different thresholds, one at the 3.3 V level and the other one at the
5V level.

High power regulator (HPREG)

The HPREG converts the 3.3 V=5 V input supply to a 1.2 V digital supply. For more
information, see the voltage regulator electrical characteristics section of the datasheet.

The regulator can be switched off by software. Refer to the main voltage regulator control bit
(MVRON) of the mode configuration registers in the mode entry module chapter of the
reference manuals.

Low power regulator (LPREG)

The LPREG generates power for the device in the STOP mode, providing the output supply
of 1.2 V. It always sees the minimum external capacitance. The control part of the regulator
can be used to disable the low power regulator. It is managed by MC_ME.

Ultra low power regulator (ULPREG)

The ULPREG generates power for the standby domain as well as a part of the main domain
and might or might not see the external capacitance. The control circuit of ULPREG can be
used to disable the ultra low power regulator by software: This action is managed by
MC_ME.

DoclD14629 Rev 9 ‘Yl

RMO0017

Voltage Regulators and Power Supplies

11.1.4

11.1.5

11.1.6

3

LVDs and POR

There are three kinds of LVD available:

1. LVD_MAIN for the 3.3 V-5V input supply with thresholds at approximately 3 V level®™
2. LVD_MAINS for the 3.3 V-5 V input supply with threshold at approximately 4.5 V level
3. LVD_DIG for the 1.2 V output voltage

The LVD_MAIN and LVD_MAIN5 sense the 3.3 V-5 V power supply for CORE, shared with
10 ring supply and indicate when the 3.3 V-5 V supply is stabilized.

Two LVD_DIGs are provided in the design. One LVD_DIG is placed in the high power
domain and senses the HPREG/LPREG output notifying that the 1.2 V output is stable. The
other LVD_DIG is placed in the standby domain and senses the standby 1.2 V supply level
notifying that the 1.2 V output is stable. The reference voltage used for all LVDs is generated
by the low power reference generator and is trimmed for LVD_DIG, using the bits LP[4:7].
Therefore, during the pre-trimming period, LVD_DIG exhibits higher thresholds, whereas
during post trimming, the thresholds come in the desired range. Power-down pins are
provided for LVDs. When LVDs are power-down, their outputs are pulled high.

POR is required to initialize the device during supply rise. POR works only on the rising
edge of the main supply. To ensure its functioning during the following rising edge of the
supply, it is reset by the output of the LVD_MAIN block when main supply reaches below the
lower voltage threshold of the LVD_MAIN.

POR is asserted on power-up when Vdd supply is above Vpgoryp min (refer to datasheet for
details). It will be released only after Vdd supply is above Vpgory (refer to datasheet for
details). Vdd above Vpgry ensures power management module including internal LVDs
modules are fully functional.

VREG digital interface

The voltage regulator digital interface provides the temporization delay at initial power-up
and at exit from low-power modes. A signal, indicating that Ultra Low Power domain is
powered, is used at power-up to release reset to temporization counter. At exit from low-
power modes, the power-down for high power regulator request signal is monitored by the
digital interface and used to release reset to the temporization counter. In both cases, on
completion of the delay counter, a end-of-count signal is released, it is gated with an other
signal indicating main domain voltage fine in order to release the VREGOK signal. This is
used by MC_RGM to release the reset to the device. It manages other specific
requirements, like the transition between high power/low power mode to ultra low power
mode avoiding a voltage drop below the permissible threshold limit of 1.08 V.

The VREG digital interface also holds control register to mask 5 V LVD status coming from
the voltage regulator at the power-up.
Register description

The VREG_CTL register is mapped to the MC_PCU address space as described in
Chapter 10: Power Control Unit (MC_PCU).

h. See section “Voltage monitor electrical characteristics” of the datasheet for detailed information about this
voltage value.

DocID14629 Rev 9 229/888

Voltage Regulators and Power Supplies RMO0017

Address: OxC3FE_8080 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0
w
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R{ O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (%
w s
A
3|
>
Lo
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Figure 92. Voltage Regulator Control Register (VREG_CTL)
Table 95. VREG_CTL field descriptions
Field Description
5V_LVD_MASK | Mask bit for 5 V LVD from regulator
This is a read/write bit and must be unmasked by writing a ‘0’ by software to generate LVD
functional reset request to MC_RGM for 5 V trip.
1: 5V LVD is masked
0: 5V LVD is not masked.
11.2 Power supply strategy

230/888

From a power-routing perspective, the device is organized as follows.

The device provides four dedicated supply domains at package level:

1.

HV (high voltage external power supply for I/Os and most analog module) — This must
be provided externally through VDD_HV/VSS_HV power pins. Voltage values should
be aligned with Vpp/Vgg. Refer to datasheet for details.

ADC (high voltage external power supply for ADC module) — This must be provided
externally through VDD_HV_ADC/VSS_HV_ADC power pins. Voltage values should
be aligned with Vpp v apc/Vss Hv apc: Refer to datasheet for details.

BV (high voltage external power supply for voltage regulator module) — This must be
provided externally through VDD_BV_/VSS_ BV power pins. Voltage values should be
aligned with Vpp/Vgg. Refer to datasheet for details.

LV (low voltage internal power supply for core, FMPLL and Flash digital logic) — This is
generated internally by embedded voltage regulator and provided to the core, FMPLL
and Flash. Three VDD_LV/VSS_LV pins pairs are provided to connect the three
decoupling capacitances. This is generated internally by internal voltage regulator but
provided outside to connect stability capacitor. Refer to datasheet for details.

3

DoclD14629 Rev 9

RM0017 Voltage Regulators and Power Supplies
The four dedicated supply domains are further divided within the package in order to reduce
as much as possible EMC and noise issues.

e HV_IO: High voltage pad supply

e HV_FLAnN: High voltage Flash supply

e HV_0SCOREG{: High voltage external oscillator and regulator supply

e HV_ADR: High voltage reference for ADC module. Supplies are further star routed to
reduce impact of ADC resistive reference on ADC capacitive reference accuracy.

e HV_ADV: High voltage supply for ADC module

e BV: High voltage supply for voltage regulator ballast. These two ballast pads are used
to supply core and Flash. Each pad contains two ballasts to supply 80 mA and 20 mA
respectively. Core is hence supplied through two ballasts of 80 mA capability and
CFlash and DFlash through two 20 mA ballasts. The HV supply for both ballasts is
shorted through double bonding.

e LV _COR: Low voltage supply for the core. It is also used to provide supply for FMPLL
through double bonding.

e LV_FLAN: Low voltage supply for Flash module n. It is supplied with dedicated ballast
and shorted to LV_COR through double bonding.

o LV_PLLY: Low voltage supply for FMPLL

11.3 Power domain organization

3

Based on stringent requirements for current consumption in different operational modes, the
device is partitioned into different power domains. Organization into these power domains
primarily means separate power supplies which are separated from each other by use of
power switches (switch SW1 for power domain No. 1 and switch SW2 for power domain No.
2 as shown in Figure 93). These different separated power supplies are hence enabling to
switch off power to certain regions of the device to avoid even leakage current consumption
in logic supplied by the corresponding power supply.

This device employs three primary power domains, namely PDO, PD1 and PD2.

As PCU supports dynamic power down of domains based on different device mode, such a
possible domain is depicted below in dotted periphery.

Power domain organization and connections to the internal regulator are depicted in
Figure 93.

i. Regulator ground is separated from oscillator ground and shorted to the LV ground through star routing

j. During production test, it is also possible to provide the VDD _LV externally through pins by configuring
regulator in bypass mode.

DoclD14629 Rev 9 231/888

Voltage Regulators and Power Supplies RMO0017
PDO
PCU | |RGM
o
3 2
CDI I:)l
2 =
VDD LV BKP
WKPU 4—‘
v
£e o | sire API
[a N —
I (a]
(6]
& FIRC —
VREG
CAN
Option bits sampler
8 KB SRAM
55 ULPVDD v
4T T HPVDD SW2
SX X LPVDD
2900 24 KB SRAM
VGATE
v |
VvV Vss ‘\ SW1
o]
HV A\ 4
PD2 GL%
€200z0h
_____ V\iakEUP_PEdi o ___
CGL
JTAG Vdds_cfla
CFlash | —
platform ME
o 4 R Lo
a 330nF
gL T
b |
> DFlash 330nF | ¢
=
16 KB SRAM vads_dif
Vss PAO
Peripheral Peripheral
Set Set 2
‘ | | | 2 PAL
(2]
| | |
\VDD12
FMPLL f
T 330nF
ADC :l d et
| ™ : i
SSsupply
PD1 B :I
AVDDsupply
VDD_LV_COR VDD_LV_BKP C_1
AVDDref

s \/DD_LV_FLAQ s VDD_LV_FLA1L

| | VDD_LV_BKP domain

Figure 93. Power domain organization

3

232/888 DoclD14629 Rev 9

RM0017 Wakeup Unit (WKPU)
12 Wakeup Unit (WKPU)
12.1 Overview
The Wakeup Unit supports 2 internal sources (WKPU[0:1]) and up to 18K) external sources
(WKPUJ[2:19]) that can generate interrupts or wakeup events, of which 1 can cause non-
maskable interrupt requests. Figure 94 is the block diagram of the Wakeup Unit and its
interfaces to other system components.
The wakeup vector mapping is shown in Table 96. All unused WKPU pins must use a pull
resistor — either pullup (internal or external) or pulldown (external) — to ensure no leakage
from floating inputs.
Table 96. Wakeup vector mapping
Port input Package
ion®
Wakeup sIU furt]ﬁstlgsned (i(r;nan WKPU IRQ to | it Register | o 8- | |
@ pi L
number Port PCR# conjunction INTC g WISR .b.'t o © O |o
. = position £ |g |
with WKPU %_ 2 |2 |2
function) < S :rr <
(o] — — N
WKPUO | APl | n/a® — WakeUp_IRQ 0| 46 | EIFO 31 (vO|vO |/ O
WKPU1 | RTC | n/a® — EIF1 30 |vO|vO@ |/ 6)
WKPU2 | PAl | PCR1 NMI EIF2 29 ViIiv|v] Vv
WKPU3 | PA2 | PCR2 — EIF3 28 VvV Vv
WKPU4 | PB1 | PCR17 CANO-RX EIF4 27 Viv|v] v
WKPU5 | PC11 | PCR43 CAN1-RX, EIF5 26 xXD| v | v | v
CAN4-RX
WKPU6 | PEO | PCR64 | CAN5-RX EIF6 25 (x®| v | v | v
WKPU7 | PE9 | PCR73 | CAN2-RX, EIF7 24 (x®| v | v | v
CAN3-RX
WKPUS8 | PB10 | PCR26 — WakeUp_IRQ_1| 47 EIF8 23 Vv |V Vv
WKPU9 | PA4 | PCR4 — EIF9 22 Vv vV
WKPU10 | PA15 | PCR15 — EIF10 21 VvV Vv
WKPU11 | PB3 | PCR19 LINO-RX EIF11 20 Viiv|v] Vv
WKPU12 | PC7 | PCR39 LIN1-RX EIF12 19 ViIiv|v] Vv
WKPU13| PC9 | PCR41 LIN2-RX EIF13 18 Vv vV
WKPU14 | PE11 | PCR75 LIN3-RX EIF14 17 x| v | v | v
WKPU15 | PF11 | PCR91 — EIF15 16 [xH|x®| v | v

3

k. Up to 18 external sources in 144-pin LQFP and 208BGA,; up to 14 external sources in 100-pin LQFP.

DoclD14629 Rev 9

233/888

Wakeup Unit (WKPU) RMO0017
Table 96. Wakeup vector mapping(Continued)
Port i?[gut Package
i 1
Wakeu SIU furi)cetlt?:ed (i(r:]an WKPU IRQ to | # Register | o |8 |G |
Pl Port used | wisrR | @bpit |Z |& |O |m
number PCR# conjunction INTC [0 o o
. = position £ |E |E&
with WKPU g_ 2 |o |2
function) < 18 |3 |8
(o] — — N
WKPU16 | PF13 | PCR93 — WakeUp_IRQ 2| 48 | EIF16 15 [x@[x@| v | v
WKPU17 | PG3 | PCR99 — EIF17 14 [(x® (x| v | v
WKPU18 | PG5 |PCR101 — EIF18 13 [(x®(x®| v | v
WKPU19 | PAO | PCRO — EIF19 12 viivi|v|Vv

1. This column does not contain an exhaustive list of functions on that pin. Rather, it includes peripheral communication
functions (such as CAN and LINFlex Rx) that could be used to wake up the microcontroller. DSPI pins are not included
because DSPI would typically be used in master mode.

WISR, IRER, WRER, WIFEER, WIFEEF, WIFER, WIPUER
Port not required to use timer functions.

4. Unavailable WKPU pins must use internal pullup enabled using WIPUER.

Wakeup Unit
NMI / Wakeup >
- Configuration p Platform
>
< > NMI enable
filter bypass
Peripheral yP
Bridge wakeup
< _fiter_j4—
D Em—
IRQ / Wakeup < 0-19 filter |
- Configuration
¢ > filter bypass
system wakeup J\\ p Mode/
7}/ Power Control
IPS
B
Us 0-2 > Interrupt
IRQs Controller
0-19 H
RTC, etc.
Figure 94. WKPU block diagram
234/888 DoclD14629 Rev 9

Pads
1I0Mux

3

RMO0017 Wakeup Unit (WKPU)

12.2 Features
The Wakeup Unit supports these distinctive features:
¢ Non-maskable interrupt support with

— 1 NMI source with bypassable glitch filter
— Independent interrupt destination: non-maskable interrupt, critical interrupt, or
machine check request
— Edge detection
e External wakeup/interrupt support with
— 3 system interrupt vectors for up to 18 interrupt sources
— Analog glitch filter per each wakeup line
— Independent interrupt mask
— Edge detection
— Configurable system wakeup triggering from all interrupt sources
— Configurable pullup
e On-chip wakeup support
— 2 wakeup sources
— Wakeup status mapped to same register as external wakeup/interrupt status

12.3 External signal description
The Wakeup Unit has 18 signal inputs that can be used as external interrupt sources in
normal RUN mode or as system wakeup sources in all power down modes.

The 18 external signal inputs include one signal input that can be used as a non-maskable
interrupt source in normal RUN, HALT or STOP modes or a system wakeup source in STOP
or STANDBY modes.

Note: The user should be aware that the Wake-up pins are enabled in ALL modes, therefore, the
Wake-up pins should be correctly terminated to ensure minimal current consumption. Any
unused Wake-up signal input should be terminated by using an external pull-up or pull-
down, or by internal pull-up enabled at WKPU_WIPUER. Also, care has to be taken on
packages where the Wake-up signal inputs are not bonded. For these packages the user
must ensure the internal pull-up are enabled for those signals not bonded.

12.4 Memory map and register description
This section provides a detailed description of all registers accessible in the WKPU module.

12.4.1 Memory map

3

Table 97 gives an overview on the WKPU registers implemented.

DoclD14629 Rev 9 235/888

Wakeup Unit (WKPU) RMO0017

Table 97. WKPU memory map
Base address: 0xC3F9_4000

Address offset Register name Location
0x00 NMI Status Flag Register (NSR) on page 236
0x04 — 0x07 Reserved
0x08 NMI Configuration Register (NCR) on page 237
0x0C — 0x13 Reserved
0x14 Wakeup/Interrupt Status Flag Register (WISR) on page 238
0x18 Interrupt Request Enable Register (IRER) on page 238
0x1C Wakeup Request Enable Register (WRER) on page 239
0x20 — 0x27 Reserved
0x28 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER) on page 239
0x2C Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER) on page 240
0x30 Wakeup/Interrupt Filter Enable Register (WIFER) on page 240
0x34 Wakeup/Interrupt Pullup Enable Register (WIPUER) on page 241
Note: Reserved registers will read as 0, writes will have no effect. If SSCM_ERROR[RAE] is
enabled, a transfer error will be issued when trying to access completely reserved register
space.

12.4.2 NMI Status Flag Register (NSR)

This register holds the non-maskable interrupt status flags.

Offset: 0x00 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R o
L
NIFO 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Z
W| wlc | wlc
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 95. NMI Status Flag Register (NSR)

3

236/888 DoclD14629 Rev 9

RMO0017

Wakeup Unit (WKPU)

Table 98. NSR field descriptions

Field Description
NIFO NMI Status Flag
If enabled (NREEO or NFEEO set), NIFO causes an interrupt request.
1 An event as defined by NREEO and NFEEO has occurred
0 No event has occurred on the pad
NOVFO NMI Overrun Status Flag
It will be a copy of the current NIFO value whenever an NMI event occurs, thereby indicating to the
software that an NMI occurred while the last one was not yet serviced. If enabled (NREEO or NFEEO
set), NOVFO causes an interrupt request.
1 An overrun has occurred on NMI input
0 No overrun has occurred on NMI input
12.4.3 NMI Configuration Register (NCR)
This register holds the configuration bits for the non-maskable interrupt settings.
Offset: 0x08 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
e o
R 5 a 0 S Q 0 0 0 0 0 0
w| & NDSS0 % ',j:J L NFEO
> > =z =
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 96. NMI Configuration Register (NCR)
Table 99. NCR field descriptions
Field Description
NLOCKO | NMI Configuration Lock Register
Writing a 1 to this bit locks the configuration for the NMI until it is unlocked by a system reset. Writing
a 0 has no effect.
NDSSO NMI Destination Source Select
00 Non-maskable interrupt
01 Critical interrupt
10 Machine check request
11 Reserved—no NMI, critical interrupt, or machine check request generated
NWREO | NMI Wakeup Request Enable

1 A set NIFO bit or set NOVFO bit causes a system wakeup request

0 System wakeup requests from the corresponding NIFO bit are disabled

Note: Software should only enable the NMI after the IVPR/IVOR registers have been configured. This
should be noted when booting from RESET or STANDBY mode as all registers will have been

cleared to their reset state.

3

DoclD14629 Rev 9 237/888

Wakeup Unit (WKPU) RMO0017

Table 99. NCR field descriptions(Continued)

Field Description

NREEO NMI Rising-edge Events Enable

1 Rising-edge event is enabled

0 Rising-edge event is disabled

NFEEO NMI Falling-edge Events Enable

1 Falling-edge event is enabled

0 Falling-edge event is disabled

NFEO NMI Filter Enable

Enable analog glitch filter on the NMI pad input.

1 Filter is enabled
0 Filter is disabled

Note: Writing a ‘0’ to both NREEO and NFEEO disables the NMI functionality completely (that is,
no system wakeup or interrupt will be generated on any pad activity)!

12.4.4 Wakeup/Interrupt Status Flag Register (WISR)

This register holds the wakeup/interrupt flags.

Offset: 0x14 Access: User read/write
0 1 2 3|4 5 6 7|8 9 10 11|12 13 14 15‘16 17 18 19‘20 21 22 23‘24 25 26 27‘28 29 30 31
R(O ololo|o|o|o|o]O EIF[19:0]D)
W wilc

Resetoooooooooooooooo\oooo\oooo\oooo\oooo

Figure 97. Wakeup/Interrupt Status Flag Register (WISR)
1. EIF[18:15] are not available in all 100-pin packages.

Table 100. WISR field descriptions

Field Description

EIF[x] External Wakeup/Interrupt WKPU[X] Status Flag

This flag can be cleared only by writing a 1. Writing a O has no effect. If enabled (IRER[X]), EIF[X]
causes an interrupt request.

1 An event as defined by WIREER and WIFEER has occurred

0 No event has occurred on the pad

Note: Status bits associated with on-chip wakeup sources are located to the left of the external
wakeup/interrupt status bits and are read only. The wakeup for these sources must be
configured and cleared at the on-chip wakeup source. Also, the configuration registers for
the external interrupts/wakeups do not have corresponding bits.

12.4.5 Interrupt Request Enable Register (IRER)

This register is used to enable the interrupt messaging from the wakeup/interrupt pads to the
interrupt controller.

238/888 DoclD14629 Rev 9 ‘Yl

RMO0017 Wakeup Unit (WKPU)

Offset: 0x18 Access: User read/write
0 1 2 3|4 5 6 7|8 9 10 11(12 13 14 15‘16 17 18 19‘20 21 22 23‘24 25 26 27‘28 29 30 31
Rlo|o|o|o|o|o|0|0|0|O|O]O EIRE[19:0]D)
W wlc

Resetoooooooooooooooo\oooo\oooo\oooo]oooo

Figure 98. Interrupt Request Enable Register (IRER)
1. EIRE[18:15] are not available in all 100-pin packages.

Table 101. IRER field descriptions

Field Description

EIRE[X] External Interrupt Request Enable x

1 A set EIF[X] bit causes an interrupt request
0 Interrupt requests from the corresponding EIF[x] bit are disabled

12.4.6 Wakeup Request Enable Register (WRER)

This register is used to enable the system wakeup messaging from the wakeup/interrupt
pads to the mode entry and power control modules.

Offset: 0x1C Access: User read/write

0 1 2 3/4 5 6 7,8 9 10 11|12 13 14 15‘16 17 18 19‘20 21 22 23‘24 25 26 27‘28 29 30 31
R|{O|O0|O|O|O|O|O|O]|O|O|0O]O 1
" WRE[19:0]D

Resetoooooooooooooooo\oooo\oooo\oooo]oooo

Figure 99. Wakeup Request Enable Register (WRER)
1. WRE[18:15] are not available in all 100-pin packages.

Table 102. WRER field descriptions

Field Description

WRE[X] External Wakeup Request Enable x

1 A set EIF[x] bit causes a system wakeup request
0 System wakeup requests from the corresponding EIF[x] bit are disabled

12.4.7 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)

This register is used to enable rising-edge triggered events on the corresponding
wakeup/interrupt pads.

Note: The RTC_API can only be configured on the rising edge.

3

DocID14629 Rev 9 239/888

Wakeup Unit (WKPU) RMO0017

Offset: 0x28 Access: User read/write

0 1 2 3|4 5 6 7|8 9 10 11(12 13 14 15‘16 17 18 19‘20 21 22 23‘24 25 26 27‘28 29 30 31
R(O0O|O|O|O|0O|0O|0O|O|O|O]|O]|O 1
W IREE[19:0]D)

Resetoooooooooooooooo\oooo\oooo\oooo]oooo

Figure 100. Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)
1. IREE[18:15] are not available in all 100-pin packages.

Table 103. WIREER field descriptions

Field Description

IREE[X] External Interrupt Rising-edge Events Enable x

1 Rising-edge event is enabled
0 Rising-edge event is disabled

12.4.8 Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)
This register is used to enable falling-edge triggered events on the corresponding

wakeup/interrupt pads.

Offset: 0x2C Access: User read/write

8 9 10 11|12 13 14 15‘16 17 18 19‘20 21 22 23‘24 25 26 27‘28 29 30 31
0(0|0|0

oO|r
[@REN)
oO|w
[«XFN
o|u
o|o
o |~

R[0
W
Resetoooooooooooooooo\oooo\oooo\oooo]oooo

IFEE[19:0]

Figure 101. Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)
1. IFEE[18:15] are not available in all 100-pin packages.

Table 104. WIFEER field descriptions

Field Description

IFEEX External Interrupt Falling-edge Events Enable x

1 Falling-edge event is enabled
0 Falling-edge event is disabled

12.4.9 Wakeup/Interrupt Filter Enable Register (WIFER)

This register is used to enable an analog filter on the corresponding interrupt pads to filter out
glitches on the inputs.

Note: There is no analog filter for the RTC_API.

3

240/888 DoclD14629 Rev 9

RMO0017 Wakeup Unit (WKPU)

Offset: 0x30 Access: User read/write

0 1 2 3|4 5 6 7|8 9 10 11(12 13 14 15‘16 17 18 19‘20 21 22 23‘24 25 26 27‘28 29 30 31
R(O0O|O|O|O|0O|0O|0O|O|O|O]|O]|O 1
W IFE[19:0]®

Resetoooooooooooooooo\oooo\oooo\oooo]oooo

Figure 102. Wakeup/Interrupt Filter Enable Register (WIFER)
1. [IFE[18:15] are not available in all 100-pin packages.

Table 105. WIFER field descriptions

Field Description

IFE[X] External Interrupt Filter Enable x
Enable analog glitch filter on the external interrupt pad input.

1 Filter is enabled
0 Filter is disabled

12.4.10 Wakeup/Interrupt Pullup Enable Register (WIPUER)

This register is used to enable a pullup on the corresponding interrupt pads to pull an
unconnected wakeup/interrupt input to a value of ‘1’

Offset: 0x34 Access: User read/write
0 1 2 3|4 5 6 7|8 9 10 11(12 13 14 15‘16 17 18 19‘20 21 22 23‘24 25 26 27‘28 29 30 31
R| O ojo|jo|o|0ofl0O|O|Of0O|O

IPUE[19:0]D)

w
Resetoooooooooooooooo\oooo\oooo\oooo\oooo

Figure 103. Wakeup/Interrupt Pullup Enable Register (WIPUER)
1. [IPUE[18:15] are not available in all 100-pin packages.

Table 106. WIPUER field descriptions

Field Description

IPUE[X] External Interrupt Pullup Enable x

1 Pullup is enabled
0 Pullup is disabled

12.5 Functional description

12.5.1 General

This section provides a complete functional description of the Wakeup Unit.

3

DoclD14629 Rev 9 241/888

Wakeup Unit (WKPU) RMO0017

12.5.2

Note:

12.5.2.1

242/888

Non-maskable interrupts

The Wakeup Unit supports one non-maskable interrupt which is allocated to the following
pins:

e 100-pin LQFP: Pin 7

e 144-pin LQFP: Pin 11

e 208-pin BGA: Pin F3

The Wakeup Unit supports the generation of three types of interrupts from the NMI. The

Wakeup Unit supports the capturing of a second event per NMI input before the interrupt is
cleared, thus reducing the chance of losing an NMI event.

Each NMI passes through a bypassable analog glitch filter.

Glitch filter control and pad configuration should be done while the NMI is disabled in order
to avoid erroneous triggering by glitches caused by the configuration process itself.

(@)
T
c

| Mode/
Pwr Ctl

M

critical IRQ

N

ation

machine check

il

Wakeup Enable

Overrun

Edge Detect

Glitch Filter

[o o
Q w] o
202|848k
=4 = z z z
NMI Configuration Register (NCR)

Figure 104. NMI pad diagram

NMI management

The NMI can be enabled or disabled using the single NCR register laid out to contain all
configuration bits for an NMI in a single byte (see Figure 96). The pad defined as an NMI can
be configured by the user to recognize interrupts with an active rising edge, an active falling

DoclD14629 Rev 9 ‘Yl

RMO0017

Wakeup Unit (WKPU)

Note:

Note:

12.5.3

3

edge or both edges being active. A setting of having both edge events disabled results in no
interrupt being detected and should not be configured.

The active NMI edge is controlled by the user through the configuration of the NREEO and
NFEEO bits.

After reset, NREEO and NFEEO are set to ‘0’, therefore the NMI functionality is disabled after
reset and must be enabled explicitly by software.

Once the pad’'s NMI functionality has been enabled, the pad cannot be reconfigured in the
IOMUX to override or disable the NMI.

The NMI destination interrupt is controlled by the user through the configuration of the
NDSSO field. See Table 99 for details.

An NMI supports a status flag and an overrun flag which are located in the NSR register (see
Figure 95). The NIFO and NOVFO fields in this register are cleared by writing a ‘1’ to them;
this prevents inadvertent overwriting of other flags in the register. The status flag is set
whenever an NMI event is detected. The overrun flag is set whenever an NMI event is
detected and the status flag is set (that is, has not yet been cleared).

The overrun flag is cleared by writing a ‘1’ to the appropriate overrun bit in the NSR register.
If the status bit is cleared and the overrun bit is still set, the pending interrupt will not be
cleared.

External wakeups/interrupts

The Wakeup Unit supports up to 18 external wakeup/interrupts which can be allocated to any
pad necessary at the SoC level. This allocation is fixed per SoC.

The Wakeup Unit supports up to three interrupt vectors to the interrupt controller of the SoC.
Each interrupt vector can support up to the number of external interrupt sources from the
device pads with the total across all vectors being equal to the number of external interrupt
sources. Each external interrupt source is assigned to exactly one interrupt vector. The
interrupt vector assignment is sequential so that one interrupt vector is for external interrupt
sources 0 through N-1, the next is for N through N+M-1, and so forth.

See Figure 105 for an overview of the external interrupt implementation for the example of
three interrupt vectors with up to eight external interrupt sources each.

DoclD14629 Rev 9 243/888

Wakeup Unit (WKPU) RMO0017

Interrupt
Vectors

Note:

12531

Note:

1254

244/888

Mode /
Pwr Ctl

IRQ_19 16| IRQ_15_08 IRQ_07_00

Interrupt
Controller

| Wakeup enable

WRER[19:0]

OR OR OR
I S o s I

| IRER[19:0] |—| Interrupt enable

[Flag[19:16] | Flag[15:8] [Flag[7:0] |—| WISR[19:0] |
Rising

| Edge Detection F— WwIREER[19:0] |
Glitch Filter enable HEEEEEEEEEEEEEEEEEE Falling

T T e

Pads

RTC API

Figure 105. External interrupt pad diagram

All of the external interrupt pads within a single group have equal priority. It is the
responsibility of the user software to search through the group of sources in the most
appropriate way for their application.

Glitch filter control and pad configuration should be done while the external interrupt line is
disabled in order to avoid erroneous triggering by glitches caused by the configuration
process itself.

External interrupt management

Each external interrupt can be enabled or disabled independently. This can be performed
using a single rolled up register (Figure 98). A pad defined as an external interrupt can be
configured by the user to recognize external interrupts with an active rising edge, an active
falling edge or both edges being active.

Writing a ‘0’ to both IREE[x] and IFEE[X] disables the external interrupt functionality for that
pad completely (that is, no system wakeup or interrupt will be generated on any activity on
that pad)!

The active IRQ edge is controlled by the users through the configuration of the registers
WIREER and WIFEER.

Each external interrupt supports an individual flag which is held in the flag register (WISR).
The bits in the WISR[EIF] field are cleared by writing a ‘1’ to them; this prevents inadvertent
overwriting of other flags in the register.

On-chip wakeups

The Wakeup Unit supports two on-chip wakeup sources. It combines the on-chip wakeups
with the external ones to generate a single wakeup to the system.

DoclD14629 Rev 9 ‘Yl

RMO0017 Wakeup Unit (WKPU)

12.5.4.1 On-chip wakeup management

In order to allow software to determine the wakeup source at one location, on-chip wakeups
are reported along with external wakeups in the WISR register (see Figure 97 for details).
Enabling and clearing of these wakeups are done via the on-chip wakeup source’s own
registers.

3

DoclD14629 Rev 9 245/888

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0017

13 Real Time Clock / Autonomous Periodic Interrupt
(RTC/API)

13.1 Overview

The RTC/API is a free running counter used for time keeping applications. The RTC may be
configured to generate an interrupt at a predefined interval independent of the mode of
operation (run mode or low power mode). If in a low power mode when the RTC interval is
reached, the RTC first generates a wakeup and then assert the interrupt request. The RTC
also supports an autonomous periodic interrupt (API) function used to generate a periodic
wakeup request to exit a low power mode or an interrupt request.

13.2 Features

Features of the RTC/API include:
e 3 selectable counter clock sources
— SIRC (128 kHz)
— SXOSC (32 KHz)
— FIRC (16 MHz)
e Optional 512 prescaler and optional 32 prescaler
e 32-bit counter
— Supports times up to 1.5 months with 1 ms resolution
— Runs in all modes of operation
— Reset when disabled by software and by POR

e 12-bit compare value to support interrupt intervals of 1 s up to greater than 1 hr with 1 s
resolution

e RTC compare value changeable while counter is running
e RTC status and control register are reset only by POR
e Autonomous periodic interrupt (API)
— 10-bit compare value to support wakeup intervals of 1.0 msto1s
— Compare value changeable while counter is running
e Configurable interrupt for RTC match, APl match, and RTC rollover
e Configurable wakeup event for RTC match, API match, and RTC rollover

3

246/888 DoclD14629 Rev 9

RMO0017

Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

Reserved
FIRC

SIRC
SXOSC

3

[32]

—

CLKSEL[0:1]

}47 load

divs12
—s

div512en

div32
_>

div32en

APIF

APIIE

sync

» APl wakeup

e

interrupt

» RTC wakeup

RTCCNT |
sync ‘ APIVAL |
22:31 v
— |
A
APIEN offset reg
reset
v
22:31
oI]
» ==
32-bit counter ‘
Teset &10;21
‘ == < RTCVAL ‘
z
w
'_
=4
O | sync
RTCIE
ROVREN

Figure 106. RTC/API block diagram

DoclD14629 Rev 9

RTC interrupt

247/888

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0017

(cnten & clksel==2"b11)

en

Reserved -
C.G
CELL

(cnten & clksel==2"b10)

| o
en

FIRC

CG.
CELL

(cnten & clksel==2’b01)

en —
SIRC 32-bit counter
C.G en
CELL T
=]
. 4
div512en \H UEJ
(cnten & clksel== 2|’b00) div32en ©
en
SX0SC
cG T
CELL

CLKSEL[0:1]

Figure 107. Clock gating for RTC clocks

13.3 Device-specific information

For SPC560Bx and SPC560Cx, the device specific information is the following:

e SXOSC, FIRC and SIRC clocks are provided as counter clocks for the RTC. Default
clock on reset is SIRC divided by 4.

e The RTC will be reset on destructive reset, with the exception of software watchdog
reset.

e The RTC provides a configurable divider by 512 to be optionally used when FIRC
source is selected.

13.4 Modes of operation

13.4.1 Functional mode

There are two functional modes of operation for the RTC: normal operation and low power
mode. In normal operation, all RTC registers can read or written and the input isolation is

248/888 DoclD14629 Rev 9 ‘Yl

RM0017 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)
disabled. The RTC/API and associated interrupts are optionally enabled. In low power
mode, the bus interface is disabled and the input isolation is enabled. The RTC/API is
enabled if enabled prior to entry into low power mode.

13.4.2 Debug mode
On entering into the debug mode the RTC counter freezes on the last valid count if the
RTCC[FRZEN] is set. On exit from debug mode counter continues from the frozen value.

13.5 Register descriptions
Table 107 lists the RTC/API registers.

Table 107. RTC/API register map
Base address: OxC3FE_C000
Address offset Register Location
0x0 RTC Supervisor Control Register (RTCSUPV) on page 249
0x4 RTC Control Register (RTCC) on page 250
0x8 RTC Status Register (RTCS) on page 252
0xC RTC Counter Register (RTCCNT) on page 252

13.5.1 RTC Supervisor Control Register (RTCSUPV)

The RTCSUPV register contains the SUPV bit which determines whether other registers are
accessible in supervisor mode or user mode.

Note: RTCSUPV register is accessible only in supervisor mode.

Offset: 0x0 Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R|>
o
w3
Reset 1 0 0 0O 0O 0O OOOOOOOOOOOOOOOOOOOOOOOOOO
Figure 108. RTC Supervisor Control Register (RTCSUPV)
Table 108. RTCSUPV field descriptions
Field Description
SUPV RTC Supervisor Bit

0 All registers are

accessible in both user as well as supervisor mode.

1 All other registers are accessible in supervisor mode only.

3

DoclD14629 Rev 9

249/888

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0017

13.5.2 RTC Control Register (RTCC)
The RTCC register contains:
o RTC counter enable
e RTC interrupt enable
o RTC clock source select
e RTC compare value
e APl enable
e APl interrupt enable
e API compare value
Offset: 0x4 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| = zZ
ez &
W| O N S RTCVAL
|k | & |0
O w &
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R pd
Z w ';'\IJ E
w = | CkSEL | & | § APIVAL
o o o)
< < > 2
) 0
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 109. RTC Control Register (RTCC)
Table 109. RTCC field descriptions
Field Description
CNTEN Counter Enable
The CNTEN field enables the RTC counter. Making CNTEN bit 1'b0 has the effect of
asynchronously resetting (synchronous reset negation) all the RTC and API logic. This allows for
the RTC configuration and clock source selection to be updated without causing synchronization
issues.
1 Counter enabled
0 Counter disabled
RTCIE RTC Interrupt Enable
The RTCIE field enables interrupts requests to the system if RTCF is asserted.
1 RTC interrupts enabled
0 RTC interrupts disabled
FRZEN Freeze Enable
The counter freezes on entering the debug mode on the last valid count value if the FRZEN bit is
set. After coming out of the debug mode, the counter starts from the frozen value.
0 Counter does not freeze in debug mode.
1 Counter freezes in debug mode.

250/888

3

DoclD14629 Rev 9

RMO0017

Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

Table 109. RTCC field descriptions(Continued)

Field

Description

ROVREN

Counter Roll Over Wakeup/Interrupt Enable

The ROVREN bit enables wakeup and interrupt requests when the RTC has rolled over from
OxFFFF_FFFF to 0x0000_0000. The RTCIE bit must also be set in order to generate an interrupt
from a counter rollover.

1 RTC rollover wakeup/interrupt enabled

0 RTC rollover wakeup/interrupt disabled

RTCVAL

RTC Compare Value

The RTCVAL bits are compared to bits 10:21 of the RTC counter and if match sets RTCF. RTCVAL
can be updated when the counter is running.

Note: RTCVAL = 0 does not generate an interrupt.

APIEN

Autonomous Periodic Interrupt Enable

The APIEN bit enables the autonomous periodic interrupt function.
1 APl enabled

0 API disabled

APIIE

API Interrupt Enable

The APIIE bit enables interrupts requests to the system if APIF is asserted.
1 APIinterrupts enabled

0 API interrupts disabled

CLKSEL

Clock Select

This field selects the clock source for the RTC. CLKSEL may only be updated when CNTEN is 0.
The user should ensure that oscillator is enabled before selecting it as a clock source for RTC.
00 SXOsC

01 SIRC

10 FIRC

11 Reserved

DIV512EN

Divide by 512 enable

The DIV512EN bit enables the 512 clock divider. DIV512EN may only be updated when CNTEN is
0.

0 Divide by 512 is disabled.

1 Divide by 512 is enabled.

DIV32EN

Divide by 32 enable

The DIV32EN bit enables the 32 clock divider. DIV32EN may only be updated when CNTEN is 0.
0 Divide by 32 is disabled.

1 Divide by 32 is enabled.

APIVAL

API Compare Value

The APIVAL field is compared with bits 22:31 of the RTC counter and if match asserts an

interrupt/wakeup request. APIVAL may only be updated when APIEN is 0 or API function is

undefined.

Note: API functionality starts only when APIVAL is nonzero. The first API interrupt takes two more
cycles because of synchronization of APIVAL to the RTC clock, and APIVAL + 1 cycles for
subsequent occurrences. After that, interrupts are periodic in nature. Because of
synchronization issues, the minimum supported value of APIVAL is 4.

3

DoclD14629 Rev 9 251/888

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0017

13.5.3 RTC Status Register (RTCS)
The RTCS register contains:
e RTC interrupt flag
e APl interrupt flag
. ROLLOVR Flag
Offset: 0x8 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 ‘-(_'3 0 0 0 0 0 0 0 0 0 0 0 0 0
w &
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 w 0 0 é 0 0 0 0 0 0 0 0 0 0
w a o)
< 4
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 110. RTC Status Register (RTCS)
Table 110. RTCS field descriptions
Field Description
RTCF RTC Interrupt Flag
The RTCF bit indicates that the RTC counter has reached the counter value matching RTCVAL.
RTCF is cleared by writing a 1 to RTCF. Writing a 0 to RTCF has no effect.
1 RTC counter matches RTCVAL
0 RTC counter is not equal to RTCVAL
APIF API Interrupt Flag
The APIF bit indicates that the RTC counter has reached the counter value matching API offset
value. APIF is cleared by writing a 1 to APIF. Writing a 0 to APIF has no effect.
1 APl interrupt
0 No API interrupt
Note: The periodic interrupt comes after APIVAL[0:9] + 1’'b1 RTC counts
ROVRF Counter Roll Over Interrupt Flag
The ROVREF bit indicates that the RTC has rolled over from Oxffff_ffff to 0x0000_0000. ROVRF is
cleared by writing a 1 to ROVRF.
1 RTC has rolled over
0 RTC has not rolled over
13.5.4 RTC Counter Register (RTCCNT)

252/888

The RTCCNT register contains the current value of the RTC counter.

3

DoclD14629 Rev 9

RM0017 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)
Offset: OxC Access: Read
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R RTCCNT
w [[T PP PP PP PP PP

Reset 0 0 0 0 O 0O 0O 0O 0O 0OOOOOOOOOOOOOOOOOOOSOOODO

Figure 111. RTC Counter Register (RTCCNT)

Table 111. RTCCNT field descriptions

Field

Description

RTCCNT

RTC Counter Value
Due to the clock synchronization, the RTCCNT value may actually represent a previous counter
value.

13.6

13.7

3

RTC functional description

The RTC consists of a 32-bit free running counter enabled with the RTCC[CNTEN] bit
(CNTEN when negated asynchronously resets the counter and synchronously enables the
counter when enabled). The value of the counter may be read via the RTCCNT register.
Note that due to the clock synchronization, the RTCCNT value may actually represent a
previous counter value. The difference between the counter and the read value depends on
ratio of counter clock and system clock. Maximum possible difference between the two is 6
count values.

The clock source to the counter is selected with the RTCC[CLKSEL] field, which gives the
options for clocking the RTC/API. The output of the clock mux can be optionally divided by
combination of 512 and 32 to give a 1 ms RTC/API count period for different clock sources.
Note that the RTCC[CNTEN] bit must be disabled when the RTC/API clock source is
switched.

When the counter value for counter bits 10:21 match the 12-bit value in the RTCC[RTCVAL]
field, then the RTCS[RTCEF] interrupt flag bit is set (after proper clock synchronization). If the
RTCCIRTCIE] interrupt enable bit is set, then the RTC interrupt request is generated. The
RTC supports interrupt requests in the range of 1 s to 4096 s (> 1 hr) with a 1 s resolution. If
there is a match while in low power mode then the RTC will first generate a wakeup request
to force a wakeup to run mode, then the RTCF flag will be set.

A rollover wakeup and/or interrupt can be generated when the RTC transitions from a count
of OXFFFF_FFFF to 0x0000_0000. The rollover flag is enabled by setting the
RTCC[ROVREN] bit. An RTC counter rollover with this bit will cause a wakeup from low
power mode. An interrupt request is generated for an RTC counter rollover when both the
RTCC[ROVREN] and RTCC[RTCIE] bits are set.

All the flags and counter values are synchronized with the system clock. It is assumed that
the system clock frequency is always more than or equal to the rtc_clk used to run the
counter.

API functional description

Setting the RTCC[APIEN] bit enables the autonomous interrupt function. The 10-bit
RTCCIJAPIVAL] field selects the time interval for triggering an interrupt and/or wakeup event.

DoclD14629 Rev 9 253/888

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0017

Since the RTC is a free running counter, the APIVAL is added to the current count to
calculate an offset. When the counter reaches the offset count, a interrupt and/or wakeup
request is generated. Then the offset value is recalculated and again re-triggers a new
request when the new value is reached. APIVAL may only be updated when APIEN is
disabled. When a compare is reached, the RTCS[APIF] interrupt flag bit is set (after proper
clock synchronization). If the RTCC[APIIE] interrupt enable bit is set, then the API interrupt
request is generated. If there is a match while in low power mode, then the API will first
generate a wakeup request to force a wakeup into normal operation, then the APIF flag will
be set.

3

254/888 DoclD14629 Rev 9

RMO0017

CAN Sampler

14

14.1

14.2

3

CAN Sampler

Introduction

The CAN sampler peripheral has been designed to store the first identifier of CAN message
“detected” on the CAN bus while no precise clock (crystal) is running at that time on the
device, typically in low power modes (STOP, HALT or STANDBY) or in RUN mode with crystal
switched off.

Depending on both CAN baud rate and low power mode used, it is possible to catch either
the first or the second CAN frame by sampling one CAN Rx port among six and storing all
samples in internal registers.

After selection of the mode (first or second frame), the CAN sampler stores samples of the
48 bits or skips the first frame and stores samples of the 48 bits of second frame using the
16 MHz fast internal RC oscillator and the 5-bit clock prescaler.

After completion, software has to process the sampled data in order to rebuild the 48 minimal
bits.

P ———— Y} > AAA | @ »

Base Identifier (11-bit) Extended Identifier (18-bit) Data
Length

RTR-bit — Code

rl
IDE-bit
SPR
SOF 0

Figure 112. Extended CAN data frame

Main features

e Store 384 samples, equivalent to 48 CAN bit @ 8 samples/bit

e Sample frequency from 500 kHz up to 16 MHz, equivalent at 8 samples/bit to CAN
baud rates of 62.5 Kbps to 2 Mbps

e User selectable CAN Rx sample port [CANORX-CAN5RX]
e 16 MHz fast internal RC oscillator clock

e 5-bit clock prescaler

e Configurable trigger mode (immediate, next frame)

e Flexible samples processing by software

e Very low power consumption

DoclD14629 Rev 9 255/888

CAN Sampler RM0017

14.3 Register description

The CAN sampler registers are listed in Table 112.

Table 112. CAN sampler memory map

Base address: OxFFE7_0000

Address offset Register Location
0x00 Control Register (CR) on page 256
0x04-0x30 Sample registers 0—11 on page 257

14.3.1 Control Register (CR)

Offset: 0x00 Access: Read/write

0 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-
N
w
IN
4
o
~
®
©

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| W
m . i
T | > I o«
= | 2| Y |lo0o]|o0o| o |4 g
o | 3 = o) CAN_RX_SEL BRP =
O
[O = n
< < ZI
x <
\WY; O
Reset O 0 0 0 0 0 0 0 ‘ 0 0 0 0 0 0 0 0
Figure 113. Control Register (CR)
Table 113. CR field descriptions
Field Description

RX_COMPLETE | 1: CAN frame is stored in the sample registers
0: CAN frame has not been stored in the sample registers

BUSY This bit indicates the sampling status
1: Sampling is ongoing
0: Sampling is complete or has not started

ACTIVE_CK This bit indicates which is current clock for sample registers, that is, xmem_ck.
1: RC_CLK is currently xmem_ck
0: ipg_clk_s is currently xmem_ck

MODE 0: Skip the first frame and sample and store the second frame (SF_MODE)
1: Sample and store the first frame (FF_MODE)

3

256/888 DoclD14629 Rev 9

RMO0017

CAN Sampler

Table 113. CR field descriptions(Continued)

Field

Description

CAN_RX_SEL

This field determines which RX port is sampled. One Rx port can be selected per sampling
routine.

000: CANORX PB[1] is selected
001: CAN1RX PCJ[11] is selected

010: CAN2RX PE[9] is selected
011: CAN3RX PE[9] is selected
100: CAN4RX PC[11] is selected
101: CAN5RX PEJ[0] is selected
110: Reserved

111: Reserved

BRP

Baud Rate Prescaler

This field is used to set the baud rate before going into STANDBY mode.
00000: Prescaler has 1

11111: Prescaler has 32

CAN_SMPLR_EN | CAN Sampler Enable

This bit enables the CAN sampler before going into STANDBY or STOP mode.
0: CAN sampler is disabled
1: CAN sampler is enabled

14.3.2 Sample register n (n =0..11)

Offsets: 0x04—0x30 (12 registers) Access: Read/write
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 1 12 13 14 15
R
SR[31:16]
w
Reset The reset values are unknown. They will be filled only after the first CAN sampling.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R
SR[15:0]
W
Reset The reset values are unknown. They will be filled only after the first CAN sampling.

3

Figure 114. Sample register n

DoclD14629 Rev 9 257/888

CAN Sampler RM0017

14.4

1441

258/888

Functional description

As the CAN sampler is driven by the 16 MHz fast internal RC oscillator (or “FIRC”) to properly
sample the CAN identifier, two modes are possible depending on both the CAN baud rate
and low power mode used:

e Immediate sampling on falling edge detection (first CAN frame): This mode is used
when the FIRC is available in LP mode (for example, STOP or HALT).

e Sampling on next frame (second CAN frame): This mode is used when the FIRC is
switched off in LP mode (for example, STANDBY). Due to the start-up times of both the
voltage regulator and the FIRC (~10 ps), the CAN sampler would miss the first bits of a
CAN identifier sent at 500 kbps. Therefore, the first identifier is ignored and the
sampling is performed on the first falling edge of after interframe space.

The CAN sampler is in power domain 0 and maintains register settings throughout low power
modes. The CAN sampler performs sampling on a user-selected CAN Rx port among six Rx
ports available, normally when the device is in STANDBY or STOP mode, storing the
samples in internal registers. The user is required to configure the baud rate to achieve eight
samples per CAN nominal bit. It does not perform any sort of filtering on input samples.
Thereafter the software must enable the sampler by setting the CAN_SMPLR_EN bit in the
CR register. It then becomes the master controller for accessing the internal registers
implemented for storing samples.

The CAN sampler, when enabled, waits for a low pulse on the selected Rx line, taking it as a
valid bit of the first CAN frame and generates the RC wakeup request which can be used to
start the FIRC. Depending upon the mode, it stores the first 8 samples of the 48 bhits on
selected Rx line or skips the first frame and stores 8 bits for first 48 bits of second frame. In
FF_MODE, it samples the CAN Rx line on the FIRC clock and stores the 8 samples of first
48 bits (384 samples). In SF_MODE, it samples the Rx and waits for 11 consecutive
dominant bits (11 * 8 samples), taking it as the end of first frame. It then waits for first low
pulse on the Rx, taking it as a valid Start of Frame (SOF) of the second frame. The sampler
takes 384 samples (48 bytes * 8) using the FIRC clock (configuring 8 samples per nominal
bit) of the second frame, including the SOF bhit. These samples are stored in consecutive
addresses of the (12 x 32) internal registers. The RX_COMPLETE bit is set to ‘1’, indicating
that sampling is complete.

Software should now process the sampled data by first becoming master for accessing
samples internal registers by resetting the CAN_SMPLR_EN bit. The sampler will need to be
enabled again to start waiting for a new sampling routine.

Enabling/Disabling the CAN sampler

The CAN sampler is disabled on reset and the CPU is able to access the 12 registers used
for storing samples. The CAN sampler must be enabled before going into STANDBY or
STOP mode by setting the CAN_SMPLR_EN bit in the Control Register (CR) by writing ‘1’ to
this bit.

In case of any activity on the selected Rx line, the sampler enables the 16 MHz fast internal
RC oscillator. When bit CAN_SMPLR_EN is reset to 0, the sampler should receive at last
three FIRC clock pulses to reset itself, after which the FIRC can be switched off.

When the software attempts to access the sample registers’ contents it must first reset the
CAN_SMPLR_EN bit by writing a ‘0’. Before accessing the register contents it must monitor
Active_CK bit for ‘0. When this bit is reset it can safely access the (12 x 32) sample registers.
While shifting from normal to sample mode and from sample to nhormal mode, the sample
register signals must be static and inactive to ensure the data is not corrupt.

DoclD14629 Rev 9 ‘Yl

RMO0017

CAN Sampler

14.4.2

3

Baud rate generation

Sampling is performed at a baud rate that is set by the software as a multiple of RC oscillator
frequency of 62.5 ns (assuming RC is configured for high frequency mode, that is, 16 MHz).
The user must set the baud rate prescaler (BRP) such that eight samples per bit are
achieved.

The baud rate setting must be made by software before going into STANDBY or STOP mode.
This is done by setting bits BRP[4:0] in the Control register. The reset value of BRP is 00000
and can be set to max. 11111 which gives a prescale value of BRP + 1, thus providing a BRP
range of 1 to 32.

e Maximum bitrate supported for sampling is 2 Mbps using BRP as 1
e Minimum bitrate supported for sampling is 62.5 kbps using BRP as 32

For example, suppose the system is transmitting at 125 kbps. In this case, nominal bit period:

Equation 2 T=1/(125*10%)s =8*10"3*10"3s = 8s

To achieve 8 samples per bit

Sample period=8/8 us =1 us

BRP =1 us/62.5 ns = 16. Thus in this case BRP = 01111

DoclD14629 Rev 9 259/888

€200z0h Core description RM0017

15

15.1

15.2

260/888

e200z0h Core description

Overview

The €200 processor family is a set of CPU cores that implement cost-efficient versions of
the Power Architecture®. e200 processors are designed for deeply embedded control
applications which require low cost solutions rather than maximum performance.

The €200z0h processors integrate an integer execution unit, branch control unit, instruction
fetch and load/store units, and a multi-ported register file capable of sustaining three read
and two write operations per clock. Most integer instructions execute in a single clock cycle.
Branch target prefetching is performed by the branch unit to allow single-cycle branches in
some cases.

The e200z0h core is a single-issue, 32-bhit Power Architecture technology VLE-only design
with 32-bit general purpose registers (GPRs). All arithmetic instructions that execute in the
core operate on data in the GPRs.

Instead of the base Power Architecture technology support, the e200z0h core implements
only the VLE (variable-length encoding) APU, providing improved code density.

Microarchitecture summary

The e200z0h processor utilizes a 4-stage pipeline for instruction execution:

e Instruction Fetch (stage 1)

e Instruction Decode/Register file Read/Effective Address Calculation (stage 2)
e Execute/Memory Access (stage 3)

e Register Writeback (stage 4)

The four stages operate in an overlapped fashion, allowing single clock instruction
execution for most instructions.

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-
bit Barrel shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation
Unit (CRU), a Count-Leading-Zeros unit (CLZ), an 8x32 Hardware Multiplier array, result
feed-forward hardware, and a hardware divider.

Arithmetic and logical operations are executed in a single cycle with the exception of the
divide and multiply instructions. A Count-Leading-Zeros unit operates in a single clock cycle.

The Instruction Unit contains a PC incrementer and a dedicated Branch Address adder to
minimize delays during change of flow operations. Sequential prefetching is performed to
ensure a supply of instructions into the execution pipeline. Branch target prefetching from
the BTB is performed to accelerate certain taken branches in the e200z0h. Prefetched
instructions are placed into an instruction buffer with four entries in the e200z0h, each
capable of holding a single 32-bit instruction or a pair of 16-bit instructions.

Conditional branches which are not taken execute in a single clock. Branches with
successful target prefetching have an effective execution time of one clock on the e200z0h.
All other taken branches have an execution time of two clocks.

Memory load and store operations are provided for byte, halfword, and word (32-bit) data
with automatic zero or sign extension of byte and halfword load data as well as optional byte
reversal of data. These instructions can be pipelined to allow effective single cycle

DoclD14629 Rev 9 ‘Yl

RMO0017

€200z0h Core description

3

throughput. Load and store multiple word instructions allow low overhead context save and
restore operations. The load/store unit contains a dedicated effective address adder to allow
effective address generation to be optimized. Also, a load-to-use dependency does not
incur any pipeline bubbles for most cases.

The Condition Register unit supports the condition register (CR) and condition register
operations defined by the Power Architecture platform. The condition register consists of
eight 4-bit fields that reflect the results of certain operations, such as move, integer and
floating-point compare, arithmetic, and logical instructions, and provide a mechanism for
testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support
is provided to allow multiple interrupt sources to have unique interrupt handlers invoked with
no software overhead.

DoclD14629 Rev 9 261/888

€200z0h Core description RM0017

15.3 Block diagram

‘) OnCE/Nexus CPU
Control Logic Control Logic
v v v
T T
LR Integer
|l cr | ;
SPR CTR GPR Y > Execution
| | Unit
| XER |
" . . < > Multiply
@ Instruction Unit Unit
§ Instruction Buffer
R Y Control
™ 5 “«—>
- 2 External
g g < > | SPfR
k9] vvYyv ntertace
< i = T Data
) 2
m (MTSPR/MFSPR)
S
S ‘g‘ PC Branch
*g = Unit Unit
O j s £
z Load/
Store P
Unit «
Data Bus Interface Unit
32 %32 %N
Address Data Control

Figure 115. e200z0h block diagram

3

262/888 DoclD14629 Rev 9

RM0017 €200z0h Core description
154 Features
The following is a list of some of the key features of the e200z0h core:
e 32-bit Power Architecture VLE-only programmer’s model
e Single issue, 32-bit CPU
e Implements the VLE APU for reduced code footprint
e In-order execution and retirement
e Precise exception handling
e Branch processing unit
— Dedicated branch address calculation adder
— Branch acceleration using Branch Target Buffer
e Supports independent instruction and data accesses to different memory subsystems,
such as SRAM and Flash memory via independent Instruction and Data bus interface
units (BIUs) (e200z0h only)
e Load/store unit
— 1cycle load latency
— Fully pipelined
— Big-endian support only
— Misaligned access support
— Zero load-to-use pipeline bubbles for aligned transfers
. Power management
— Low-power design
— Power saving modes: Nap, Sleep, and Wait
— Dynamic power management of execution units
o Testability
— Synthesizeable, full MuxD scan design
— ABIST/MBIST for optional memory arrays
15.4.1 Instruction unit features

3

The features of the €200 Instruction unit are:

32-bit instruction fetch path supports fetching of one 32-bit instruction per clock, or up
to two 16-bit VLE instructions per clock

Instruction buffer with 4 entries in e200z0h, each holding a single 32-bit instruction, or a
pair of 16-bit instructions

Dedicated PC incrementer supporting instruction prefetches

Branch unit with dedicated branch address adder supporting single cycle of execution
of certain branches, two cycles for all others

DocID14629 Rev 9 263/888

€200z0h Core description RM0017

15.4.2

15.4.3

1544

15.4.5

264/888

Integer unit features

The €200 integer unit supports single cycle execution of most integer instructions:

e 32-bit AU for arithmetic and comparison operations

e 32-bit LU for logical operations

e 32-bit priority encoder for count leading zero’s function

e 32-bit single cycle barrel shifter for shifts and rotates

e 32-bit mask unit for data masking and insertion

e Divider logic for signed and unsigned divide in 5 to 34 clocks with minimized execution
timing

e 8x32 hardware multiplier array supports 1 to 4 cycle 32x32->32 multiply (early out)

Load/Store unit features

The €200 load/store unit supports load, store, and the load multiple/store multiple
instructions:

e 32-bit effective address adder for data memory address calculations
e Pipelined operation supports throughput of one load or store operation per cycle
e 32-bit interface to memory (dedicated memory interface on €200z0h)

€200z0h system bus features

The features of the e200z0h system bus interface are as follows:

¢ Independent instruction and data buses

e AMBA® AHB™ Lite Rev 2.0 specification with support for ARM v6 AMBA extensions
— Exclusive access monitor
— Byte lane strobes
— Cache allocate support

e 32-bit address bus plus attributes and control on each bus

e 32-bit read data bus for instruction interface

e Separate uni-directional 32-bit read data bus and 32-bit write data bus for data
interface

e Overlapped, in-order accesses

Nexus 2+ features

The Nexus 2+ module is compliant with Class 2 of the IEEE-ISTO 5001-2003 standard, with
additional Class 3 and Class 4 features available. The following features are implemented:

e Program Trace via Branch Trace Messaging (BTM)—Branch trace messaging displays
program flow discontinuities (direct and indirect branches, exceptions, etc.), allowing

I. Advanced Microcontroller Bus Architecture

m. Advanced High Performance Bus

3

DoclD14629 Rev 9

RMO0017

€200z0h Core description

15.5

Note:

3

the development tool to interpolate what transpires between the discontinuities. Thus,
static code may be traced.

e Ownership Trace via Ownership Trace Messaging (OTM)—OTM facilitates ownership
trace by providing visibility of which process ID or operating system task is activated.
An Ownership Trace Message is transmitted when a new process/task is activated,
allowing the development tool to trace ownership flow.

¢ Run-time access to the processor memory map via the JTAG port. This allows for
enhanced download/upload capabilities.

e Watchpoint Messaging via the auxiliary interface
e Watchpoint Trigger enable of Program Trace Messaging
e Auxiliary interface for higher data input/output
— Configurable (min/max) Message Data Out pins (nex_mdo[n:0])
— One (1) or two (2) Message Start/End Out pins (hnex_mseo_b[1:0])
— One (1) Read/Write Ready pin (nex_rdy_b) pin
— One (1) Watchpoint Event pin (nex_evto_b)
— One (1) Event In pin (nex_evti_b)
— One (1) MCKO (Message Clock Out) pin
e Registers for Program Trace, Ownership Trace and Watchpoint Trigger control
e All features controllable and configurable via the JTAG port

Core registers and programmer’s model

This section describes the registers implemented in the e200z0h cores. It includes an
overview of registers defined by the Power Architecture platform, highlighting differences in
how these registers are implemented in the e200 core, and provides a detailed description
of e200-specific registers. Full descriptions of the architecture-defined register set are
provided in the Power Architecture specification.

The Power Architecture defines register-to-register operations for all computational
instructions. Source data for these instructions are accessed from the on-chip registers or
are provided as immediate values embedded in the opcode. The three-register instruction
format allows specification of a target register distinct from the two source registers, thus
preserving the original data for use by other instructions. Data is transferred between
memory and registers with explicit load and store instructions only.

Figure 116 shows the €200 register set including the registers which are accessible in
Supervisor mode. The number to the right of the special-purpose registers (SPRs) is the
decimal number used in the instruction syntax to access the register (for example, the
integer exception register (XER) is SPR 1).

€200z0h is a 32-bit implementation of the Power Architecture specification. In this
document, register bits are sometimes numbered from bit O (Most Significant Bit) to 31
(Least Significant Bit), rather than the Book E numbering scheme of 32:63, thus register bit
numbers for some registers in Book E are 32 higher.

Where appropriate, the Book E defined bit numbers are shown in parentheses.

DoclD14629 Rev 9 265/888

€200z0h Core description

RMO0017

e}
g S
c
> Q.
=0l
27
< Py
a @
@D «Q
= o
~+
@D
=

CTR
Link

SPR9

SPR 8

pad
m
Py

XE SPR 1

Machine State
MSR

General Registers

SUPERVISOR Mode Program Model SPRs

SPR General
General-Purpose SPRGO
Registers
SPRG1
GPRO
GPR1
L]
L]
L]
GPR31

Processor Control Registers

Hardware Implementatlon

Processor \ersion

PV SPR 287

Dependent?
HIDO SPR 1008
HID1 SPR 1009

Processor 1D
SPR 286

System Version®
SVR |SPR1023

Debug Control
DBCRO SPR 308
DBCR1 SPR 309
DBCR2 SPR 310
DBCR3! | SPR561

Debug Status

| DBSR [sPR304

Debug Registers?

Instruction Address

Compare
IAC1 SPR 312
IAC2 SPR 313
IAC3 SPR 314
IAC4 SPR 315

Data Address Compare

DAC1 SPR 316
DAC2 SPR 317
DVC1 SPR 318
DVvC2 SPR 319

Exception Handling/Control Registers

Save and Restore Interrupt Vector Prefix
SPR272 | SRRO |SPR26 SPR 63
SPR 273 SRR1 |SPR27
CSRRO |SPR 58
CSRR1 |SPR59
DSRRO! | sPR574
DSRR1L | SPRS™

Exception Syndrome Register

Machine Check Syndrome
Register

MCSR SPR 572

Data Exception Address
DEAR SPR 61
BTB Register

BTB Control!

Memory Management Registers
Process ID

Configuration (read only)

SPR 1013

MMUCFG |SPR 1015

Cache Registers

Cache
Configuration
(Read-only)

SPR 515

1 - These e200-specific registers may not be supported
by other Power Architecture processors.

2 - Optional registers defined by the Power Architecture
technology

3 - Read-only registers

Figure 116. e200z0 SUPERVISOR mode program model SPRs

266/888

DocID14629 R

3

ev9

RMO0017

Interrupt Controller (INTC)

16

16.1

16.2

3

Interrupt Controller (INTC)

Introduction

The INTC provides priority-based preemptive scheduling of interrupt service requests (ISRs).
This scheduling scheme is suitable for statically scheduled hard real-time systems. The INTC
supports 142 interrupt requests. It is targeted to work with a Power Architecture technology
processor and automotive powertrain applications where the ISRs nest to multiple levels, but
it also can be used with other processors and applications.

For high priority interrupt requests in these target applications, the time from the assertion of
the peripheral’s interrupt request from the peripheral to when the processor is performing
useful work to service the interrupt request needs to be minimized. The INTC supports this
goal by providing a unique vector for each interrupt request source. It also provides 16
priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. Since
each individual application will have different priorities for each source of interrupt request,
the priority of each interrupt request is configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be
supported. The INTC supports the priority ceiling protocol for coherent accesses. By
providing a modifiable priority mask, the priority can be raised temporarily so that all tasks
which share the resource cannot preempt each other.

Multiple processors can assert interrupt requests to each other through software configurable
interrupt requests. These same software configurable interrupt requests also can be used to
break the work involved in servicing an interrupt request into a high priority portion and a low
priority portion. The high priority portion is initiated by a peripheral interrupt request, but then
the ISR can assert a software configurable interrupt request to finish the servicing in a lower
priority ISR. Therefore these software configurable interrupt requests can be used instead of
the peripheral ISR scheduling a task through the RTOS.

Features

e Supports 134 peripheral and 8 software-configurable interrupt request sources
e Unique 9-bit vector per interrupt source
e Each interrupt source can be programmed to one of 16 priorities
e Preemption
— Preemptive prioritized interrupt requests to processor
— ISR at a higher priority preempts ISRs or tasks at lower priorities
— Automatic pushing or popping of preempted priority to or from a LIFO

— Ability to modify the ISR or task priority; modifying the priority can be used to
implement the priority ceiling protocol for accessing shared resources.

e Low latency — 3 clocks from receipt of interrupt request from peripheral to interrupt
request to processor

DoclD14629 Rev 9 267/888

Interrupt Controller (INTC)

RMO0017

16.3

268/888

Table 114. Interrupt sources available

Interrupt sources (142)

Number available

Software

ECSM

Software Watchdog (SWT)

ST™M

Flash/SRAM ECC (SEC-DED)

Real Time Counter (RTC/API)

System Integration Unit Lite (SIUL)

WKPU

MC_ME

MC_RGM

FXOSC

PIT

ADC_0

FlexCAN_0

FlexCAN_1

FlexCAN_2

FlexCAN_3

FlexCAN_4

FlexCAN_5

LINFlex_0

LINFlex_1

LINFlex_2

LINFlex_3

DSPI_0

DSPI_1

DSPI_2

12C_0

PO 0O Wl W Wl w|(w|(w|W|@|W|[OoO|FRP|IFRP|AIWINMNININ|P>»PFP|PFP|O

Enhanced Modular I/O Subsystem 0 (eMIOS_0)

=
N

eMIOS_1

[EEY
»

Block diagram
Figure 117 provides a block diagram of the INTC.

DoclD14629 Rev 9

3

RM0017 Interrupt Controller (INTC)
Software -
Priority Module
Set/Clear Select Configuration Hardware
Interrupt Registers Register Vector Enable
Registers 1
>
End of Vector Tabl
ector Table
Y ntx Highest Lowest :?nte(ntjpt Entry Size
Flag Bits 4-bits Priority Vector egister
i 9 Y
Peripheral Interrupt Interrupt Interrupt Interrupt
Interrupt 8 Y Requests Request Vector Processor 0 Vector
Requests nt | Priority nt, | Request nt, | Vector 9, o Interrupt 9, 3
| Arbitrator | selector | Encoder “| Acknowledge
. . Register
4 Highest Priority A
Pushed New
Priority Priority Y Interrupt
4 4 Request to
< Processor0 [Update Interrupt Vector 1 Processor
Processor 0 Popped Current Current Priority
Priority Priority Priority Priority | comparator 1 >
LIFo 4 > Register 4 > g
AAA AAA A A
Interrupt Acknowledge 1
Push/Update/Acknowledge 1 Slave Peripheral
Interface Bus
Pop 1 | for Reads
& Writes

16.4

16.4.1

16.4.1.1

3

I:l Memory Mapped Registers

I:l Non-Memory Mapped Logic

Figure 117. INTC block diagram

Modes of operation

Normal mode

In normal mode, the INTC has two handshaking modes with the processor: software vector
mode and hardware vector mode.

Software vector mode

In software vector mode, software, that is the interrupt exception handler, must read a register
in the INTC to obtain the vector associated with the interrupt request to the processor. The
INTC will use software vector mode for a given processor when its associated HVEN bit in
INTC_MCR is negated. The hardware vector enable signal to processor 0 or processor 1 is
driven as negated when its associated HVEN bit is negated. The vector is read from
INC_IACKR. Reading the INTC_IACKR negates the interrupt request to the associated
processor. Even if a higher priority interrupt request arrived while waiting for this interrupt
acknowledge, the interrupt request to the processor will negate for at least one clock. The
reading also pushes the PRI value in INTC_CPR onto the associated LIFO and updates PRI
in the associated INTC_CPR with the new priority.

Furthermore, the interrupt vector to the processor is driven as all 0s. The interrupt
acknowledge signal from the associated processor is ignored.

DocID14629 Rev 9 269/888

Interrupt Controller (INTC) RM0017

16.4.1.2

16.4.1.3

16.4.1.4

16.5

16.5.1

270/888

Hardware vector mode

In hardware vector mode, the hardware is the interrupt vector signal from the INTC in
conjunction with a processor with the capability use that vector. In hardware vector mode, this
hardware causes the first instruction to be executed in handling the interrupt request to the
processor to be specific to that vector. Therefore the interrupt exception handler is specific to
a peripheral or software configurable interrupt request rather than being common to all of
them. The INTC uses hardware vector mode for a given processor when the associated
HVEN bitin the INTC_MCR is asserted. The hardware vector enable signal to the associated
processor is driven as asserted. When the interrupt request to the associated processor
asserts, the interrupt vector signal is updated. The value of that interrupt vector is the unique
vector associated with the preempting peripheral or software configurable interrupt request.
The vector value matches the value of the INTVEC field in the INTC_IACKR field in the
INTC_IACKR, depending on which processor was assigned to handle a given interrupt
source.

The processor negates the interrupt request to the processor driven by the INTC by asserting
the interrupt acknowledge signal for one clock. Even if a higher priority interrupt request
arrived while waiting for the interrupt acknowledge, the interrupt request to the processor will
negate for at least one clock.

The assertion of the interrupt acknowledge signal for a given processor pushes the
associated PRI value in the associated INTC_CPR register onto the associated LIFO and
updates the associated PRI in the associated INTC_CPR register with the new priority. This
pushing of the PRI value onto the associated LIFO and updating PRI in the associated
INTC_CPR does not occur when the associated interrupt acknowledge signal asserts and
INTC_SSCIRO_3-INTC_SSCIR4_7 is written at a time such that the PRI value in the
associated INTC_CPR register would need to be pushed and the previously last pushed PRI
value would need to be popped simultaneously. In this case, PRI in the associated
INTC_CPR is updated with the new priority, and the associated LIFO is neither pushed or

popped.
Debug mode

The INTC operation in debug mode is identical to its operation in normal mode.

Stop mode

The INTC supports STOP mode. The INTC can have its clock input disabled at any time by
the clock driver on the device. While its clocks are disabled, the INTC registers are not
accessible.

The INTC requires clocking in order for a peripheral interrupt request to generate an interrupt
request to the processor. Since the INTC is not clocked in STOP mode, peripheral interrupt
requests can not be used as a wakeup source, unless the device supports that interrupt
request as a wakeup source.

Memory map and register description

Module memory map

Table 115 shows the INTC memory map.

3

DoclD14629 Rev 9

RMO0017

Interrupt Controller (INTC)

Table 115. INTC memory map

Base address: OxFFF4_8000

Address offset Register Location
0x0000 INTC Module Configuration Register (INTC_MCR) on page 271
0x0004 Reserved
0x0008 INTC Current Priority Register for Processor (INTC_CPR) ‘ on page 272
0x000C Reserved
0x0010 INTC Interrupt Acknowledge Register (INTC_IACKR) ‘ on page 274
0x0014 Reserved
0x0018 INTC End-of-Interrupt Register (INTC_EOIR) ‘ on page 275
0x001C Reserved
0x0020-0x0027 INTC Software Set/Clear Interrupt Registers (INTC_SSCIR0_3- on page 275
INTC_SSCIR4_7)

0x0028-0x003C Reserved

0x0040-0x00D0 INTC Priority Select Registers (INTC_PSR0O_3— on page 276
INTC_PSR208_210)()

1. The PRI fields are “reserved” for peripheral interrupt requests whose vectors are labeled ‘Reserved’ in Figure 119.

16.5.2

16.5.2.1

3

Register description

With exception of the INTC_SSCIn and INTC_PSRn, all registers are 32 bits in width. Any
combination of accessing the four bytes of a register with a single access is supported,
provided that the access does not cross a register boundary. These supported accesses
include types and sizes of eight bits, aligned 16 bits, misaligned 16 bits to the middle two
bytes, and aligned 32 bits.

Although INTC_SSCIn and INTC_PSRn are 8 bits wide, they can be accessed with a single
16-bit or 32-bit access, provided that the access does not cross a 32-bit boundary.

In software vector mode, the side effects of a read of INTC_IACKR are the same regardless
of the size of the read. In either software or hardware vector mode, the size of a write to either
INTC_SSCIR0_3-INTC_SSCIR4_7 or INTC_EOIR does not affect the operation of the write.

INTC Module Configuration Register (INTC_MCR)

The module configuration register is used to configure options of the INTC.

DoclD14629 Rev 9 271/888

Interrupt Controller (INTC)

RMO0017

Offset: 0x0000

Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
zZ
R| O 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 L|>J
W > T
Reset ¢ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 118. INTC Module Configuration Register (INTC_MCR)
Table 116. INTC_MCR field descriptions
Field Description
VTES Vector table entry size.
Controls the number of ‘0’s to the right of INTVEC in Section 16.5.2.3: INTC Interrupt Acknowledge
Register (INTC_IACKR). If the contents of INTC_IACKR are used as an address of an entry in a
vectortable as in software vector mode, then the number of rightmost ‘0’s will determine the size of
each vector table entry. VTES impacts software vector mode operation but also affects
INTC_IACKR[INTVEC] position in both hardware vector mode and software vector mode.
0 4 bytes
1 8 bytes
HVEN Hardware vector enable.
Controls whether the INTC is in hardware vector mode or software vector mode. Refer to
Section 16.4: Modes of operation, for the details of the handshaking with the processor in each
mode.
0 Software vector mode
1 Hardware vector mode
16.5.2.2 INTC Current Priority Register for Processor (INTC_CPR)

Offset: 0x0008

Access: Read/write

0 1 2 3|4 5 6 7|8 9 10 1112 13 14 15|16 17 18 19|20 21 22 23|24 25 26 27|28 29 30 31
R| O ojojo|jo0fo0jo0j0|O0O|0O|O|O|jO|O|0O|lO|jO|O|O|O|O|O|O|O|O|0O]|O
W PRI
Reset 0 O O 0|0 O O O|O O O O/O O O O|O O OO/OOOOOOOO|2 111

Figure 119. INTC Current Priority Register (INTC_CPR)

Table 117. INTC_CPR field descriptions

Field

Description

PRI

Priority
PRI is the priority of the currently executing ISR according to the field values defined in Table 118.

272/888

The INTC_CPR masks any peripheral or software configurable interrupt request set at the
same or lower priority as the current value of the INTC_CPR[PRI] field from generating an

S74

DoclD14629 Rev 9

RMO0017

Interrupt Controller (INTC)

Note:

3

interrupt request to the processor. When the INTC interrupt acknowledge register
(INTC_IACKR) is read in software vector mode or the interrupt acknowledge signal from the
processor is asserted in hardware vector mode, the value of PRI is pushed onto the LIFO,
and PRI is updated with the priority of the preempting interrupt request. When the INTC end-
of-interrupt register (INTC_EOIR) is written, the LIFO is popped into the INTC_CPR’s PRI
field.

The masking priority can be raised or lowered by writing to the PRI field, supporting the PCP.
Refer to Section 16.7.5: Priority ceiling protocol.

A store to modify the PRI field which closely precedes or follows an access to a shared
resource can result in a non-coherent access to that resource. Refer to Section 16.7.5.2:
Ensuring coherency for example code to ensure coherency.

Table 118. PRI values

PRI Meaning

1111 Priority 15—nhighest priority
1110 Priority 14

1101 Priority 13

1100 Priority 12

1011 Priority 11

1010 Priority 10

1001 Priority 9

1000 Priority 8

0111 Priority 7

0110 Priority 6

0101 Priority 5

0100 Priority 4

0011 Priority 3

0010 Priority 2

0001 Priority 1

0000 Priority O—lowest priority

DoclD14629 Rev 9 273/888

Interrupt Controller (INTC) RM0017

16.5.2.3 INTC Interrupt Acknowledge Register (INTC_IACKR)

Offset: 0x0010 Access: Read/write
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 1 ‘ 12 13 14 15
R
VTBA[20:5]
w
Reset 0 0 0 ‘ 0 0 0 0 ‘ 0 0 0 0 ‘ 0 0 0 0

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31

R INTVEC 0 0
VTBA[4:0]
w || 1] |
Reset 0 0 0 ‘ 0 0 0 0 0 0 0 0 0 0 0 0

Figure 120. INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] =0

Offset: 0x0010 Access: Read/write
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 11 ‘ 12 13 14 15
R
VTBA[19:4]
W
Reset 0 0 0 ‘ 0 0 0 0 ‘ 0 0 0 0 ‘ 0 0 0 0
16 17 18 19 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R INTVEC 0 0 0
VTBA[3:0]
w L [
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 121. INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] =1

Table 119. INTC_IACKR field descriptions

Field Description

VTBA Vector Table Base Address
Can be the base address of a vector table of addresses of ISRs.

INTVEC | Interrupt Vector

It is the vector of the peripheral or software configurable interrupt request that caused the interrupt
request to the processor. When the interrupt request to the processor asserts, the INTVEC is
updated, whether the INTC is in software or hardware vector mode.

The interrupt acknowledge register provides a value which can be used to load the address
of an ISR from a vector table. The vector table can be composed of addresses of the ISRs
specific to their respective interrupt vectors.

In software vector mode, the INTC_IACKR has side effects from reads. Therefore, it must not
be speculatively read while in this mode. The side effects are the same regardless of the size
of the read. Reading the INTC_IACKR does not have side effects in hardware vector mode.

3

274/888 DoclD14629 Rev 9

RMO0017

Interrupt Controller (INTC)

16.5.2.4

Offset: 0x0018

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

INTC End-of-Interrupt Register (INTC_EOIR)

16 17 18 19

20 21 22 23

Access: Write only

24 25 26 27

28 29 30 31

RO‘O‘O‘O

o\o\o\o

o|o|o\o

o\o\o\o

o\o\o\o

o|o|o|o

o\o\o\o

0\0\0\0

w

See text

Reseto00o‘oooo‘oooo‘o000‘0000‘0000‘0000‘0000
Figure 122. INTC End-of-Interrupt Register (INTC_EOIR)

Writing to the end-of-interrupt register signals the end of the servicing of the interrupt request.
When the INTC_EOIR is written, the priority last pushed on the LIFO is popped into
INTC_CPR. An exception to this behavior is described in Section 16.4.1.2: Hardware vector
mode. The values and size of data written to the INTC_EOIR are ignored. The values and
sizes written to this register neither update the INTC_EOIR contents or affect whether the
LIFO pops. For possible future compatibility, write four bytes of all Os to the INTC_EOIR.

Reading the INTC_EOIR has no effect on the LIFO.

16.5.2.5

INTC_SSCIR4_7)

Offset: 0x0020

INTC Software Set/Clear Interrupt Registers (INTC_SSCIR0_3-

Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Rl O 0 0 % 0 0 0 0 0 g

w SETO| © SET1| ©
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Rl O 0 0 0 0 0 0 E 0 0 0 0 0 0 0 E

w SET2| © SET3| ©
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 123. INTC Software Set/Clear Interrupt Register 0-3 (INTC_SSCIRJ[0:3])

Offset: 0x0024

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R O 0 0 S 0 0 0 0 0 g
W SET4 % SET5 §
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R O 0 0 0 0 0 0 g 0 0 0 0 0 0 0 E
w SET6| © SET7| ©
Reset ¢ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 124. INTC Software Set/Clear Interrupt Register 4—7 (INTC_SSCIR[4:7])
"_l DoclD14629 Rev 9 275/888

Interrupt Controller (INTC) RM0017

Table 120. INTC_SSCIR[0:7] field descriptions

Field Description
SETx Set Flag Bits
Writing a 1 sets the corresponding CLRx bit. Writing a 0 has no effect. Each SETx always will be
read as a 0.
CLRx Clear Flag Bits
CLRx is the flag bit. Writing a 1 to CLRx clears it provided that a 1 is not written simultaneously to its
corresponding SETx bit. Writing a 0 to CLRx has no effect.
0 Interrupt request not pending within INTC
1 Interrupt request pending within INTC
The software set/clear interrupt registers support the setting or clearing of software
configurable interrupt request. These registers contain eight independent sets of bits to set
and clear a corresponding flag bit by software. Excepting being set by software, this flag bit
behaves the same as a flag bit set within a peripheral. This flag bit generates an interrupt
request within the INTC like a peripheral interrupt request. Writing a 1 to SETx will leave
SETx unchanged at 0 but sets CLRx. Writing a 0 to SETx has no effect. CLRx is the flag bit.
Writing a 1 to CLRXx clears it. Writing a 0 to CLRx has no effect. If a 1 is written simultaneously
to a pair of SETx and CLRXx bits, CLRx will be asserted, regardless of whether CLRx was
asserted before the write.
16.5.2.6 INTC Priority Select Registers (INTC_PSR0O_3-INTC_PSR208_210)
Offset: 0x0040 Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Rl o 0 0 0 PRIO 0 0 0 0 PRI1
w
Reset ¢ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl o 0 0 0 PRI2 0 0 0 0 PRI3
w
Reset ¢ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 125. INTC Priority Select Register 0-3 (INTC_PSR[0:3])
Offset: 0x0110 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R O 0 0 0
PRI208 PRI209
w
Reset ¢ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0
PRI210
w
Reset ¢ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 126. INTC Priority Select Register 208-210 (INTC_PSR[208:210])
276/888 DocID14629 Rev 9 Kys

RMO0017

Interrupt Controller (INTC)

3

Table 121. INTC_PSRO_3-INTC_PSR208_210 field descriptions

Field

Description

PRI Priority Select
PRIx selects the priority for interrupt requests. See Section 16.6: Functional description.

Table 122. INTC Priority Select Register address offsets

INTC_PSRx_x Offset address INTC_PSRx_x Offset address
INTC_PSRO_3 0x0040 INTC_PSR108_111 0x00AC
INTC_PSR4_7 0x0044 INTC_PSR112_115 0x00BO
INTC_PSR8_11 0x0048 INTC_PSR116_119 0x00B4
INTC_PSR12_15 0x004C INTC_PSR120_123 0x00B8
INTC_PSR16_19 0x0050 INTC_PSR124 127 0x00BC
INTC_PSR20_23 0x0054 INTC_PSR128_131 0x00CO0
INTC_PSR24_27 0x0058 INTC_PSR132_135 0x00C4
INTC_PSR28 31 0x005C INTC_PSR136_139 0x00C8
INTC_PSR32_35 0x0060 INTC_PSR140_143 0x00CC
INTC_PSR36_39 0x0064 INTC_PSR144 147 0x00DO0
INTC_PSR40_43 0x0068 INTC_PSR148 151 0x00D4
INTC_PSR44 47 0x006C INTC_PSR152_155 0x00D8
INTC_PSR48 51 0x0070 INTC_PSR156_159 0x00DC
INTC_PSR52_55 0x0074 INTC_PSR160_163 Ox00EOQ
INTC_PSR56_59 0x0078 INTC_PSR164_167 0xO0E4
INTC_PSR60_63 0x007C INTC_PSR168 171 0xOOES8
INTC_PSR64_67 0x0080 INTC_PSR172_175 0x00EC
INTC_PSR68 71 0x0084 INTC_PSR176_179 0Xx00F0
INTC_PSR72_75 0x0088 INTC_PSR180_183 0x00F4
INTC_PSR76_79 0x008C INTC_PSR184 187 0x00F8
INTC_PSR80_83 0x0090 INTC_PSR188 191 O0x00FC
INTC_PSR84_87 0x0094 INTC_PSR192_195 0x0100
INTC_PSR88 91 0x0098 INTC_PSR196_199 0x0104
INTC_PSR92_95 0x009C INTC_PSR200_203 0x0108
INTC_PSR96_99 0x00A0 INTC_PSR204_207 0x010C
INTC_PSR100_103 0x00A4 INTC_PSR208 210 0x0110

INTC_PSR104_107 0x00A8 — —
DocID14629 Rev 9 277/888

Interrupt Controller (INTC) RM0017

16.6 Functional description

The functional description involves the areas of interrupt request sources, priority
management, and handshaking with the processor.

Note: The INTC has no spurious vector support. Therefore, if an asserted peripheral or software
settable interrupt request, whose PRIn value in INTC_PSRO-INTC_PSR210 is higher than
the PRI value in INTC_CPR, negates before the interrupt request to the processor for that
peripheral or software settable interrupt request is acknowledged, the interrupt request to
the processor still can assert or will remain asserted for that peripheral or software settable
interrupt request. In this case, the interrupt vector will correspond to that peripheral or
software settable interrupt request. Also, the PRI value in the INTC_CPR will be updated
with the corresponding PRIn value in INTC_PSRn. Furthermore, clearing the peripheral
interrupt request’s enable bit in the peripheral or, alternatively, setting its mask bit has the
same consequences as clearing its flag bit. Setting its enable bit or clearing its mask bit
while its flag bit is asserted has the same effect on the INTC as an interrupt event setting the

flag bit.
Table 123. Interrupt vector table
IRQ #| Offset Size Interrupt Module
(bytes) P

Section A (Core Section)

— | 0x0000 16 |Critical Input

(INTC software vector mode) / NMI Core
— | 0x0010 16 |Machine check / NMI Core
— | 0x0020 16 |Data Storage Core
— | 0x0030 16 |Instruction Storage Core
— | 0x0040 16 |External Input Core

(INTC software vector mode)
— | 0x0050 16 |Alignment Core
— | 0x0060 16 |Program Core
— | 0x0070 16 |Reserved Core
— | 0x0080 16 |System call Core
— | 0x0090 96 |Unused Core
— | OxO0F0 16 |Debug Core
— | 0x0100 | 1792 |Unused Core

Section B (On-Platform Peripherals)

0 0x0800 4 Software configurable flag O Software
1 0x0804 4 Software configurable flag 1 Software
2 0x0808 4 Software configurable flag 2 Software
3 0x080C 4 Software configurable flag 3 Software
4 0x0810 4 Software configurable flag 4 Software
5 0x0814 4 Software configurable flag 5 Software
278/888 DoclD14629 Rev 9 "_l

RM0017 Interrupt Controller (INTC)
Table 123. Interrupt vector table(Continued)
IRQ #| Offset Size Interrupt Module
(bytes)

6 0x0818 4 Software configurable flag 6 Software

7 0x081C 4 Software configurable flag 7 Software

8 0x0820 4 Reserved

9 0x0824 4 Platform Flash Bank 0 Abort |
Platform Flash Bank 0 Stall |
Platform Flash Bank 1 Abort | ECSM
Platform Flash Bank 1 Stall |

10 | 0x0828 4 Reserved

11 | 0x082C 4 Reserved

12 | 0x0830 4 Reserved

13 | 0x0834 4 Reserved

14 | 0x0838 4 Reserved

15 | 0x083C 4 Reserved

16 | 0x0840 4 Reserved

17 | 0x0844 4 Reserved

18 | 0x0848 4 Reserved

19 | 0x084C 4 Reserved

20 | 0x0850 4 Reserved

21 | 0x0854 4 Reserved

22 | 0x0858 4 Reserved

23 | 0x085C 4 Reserved

24 | 0x0860 4 Reserved

25 | 0x0864 4 Reserved

26 | 0x0868 4 Reserved

27 | 0x086C 4 Reserved

28 | 0x0870 4 Timeout SWT

29 | 0x0874 4 Reserved

30 | 0x0878 4 Match on channel 0 ST™M

31 | Ox087C 4 Match on channel 1 ST™M

32 | 0x0880 4 Match on channel 2 ST™M

33 | 0x0884 4 Match on channel 3 STM

34 | 0x0888 4 Reserved

35 | 0x088C 4 ECC_DBD_PlatformFlash | . .
ECC_DBD_ PlatformRAM Platform ECC Double Bit Detection

3

DoclD14629 Rev 9

279/888

Interrupt Controller (INTC)

RMO0017

Table 123. Interrupt vector table(Continued)

IRQ #| Offset (bSyitzees) Interrupt Module
36 | 0x0890 4 ECC_SBC_PlatformFlash | . . .
ECC_SBC_PlatformRAM Platform ECC Single Bit Correction
37 | 0x0894 4 Reserved
Section C
38 | 0x0898 4 RTC RTC/API
39 | 0x089C 4 |API RTC/API
40 | Ox08A0 4 Reserved
41 | Ox08A4 4 SIU External IRQ_0 SIUL
42 | Ox08A8 4 SIU External IRQ_1 SIUL
43 | OX08AC 4 Reserved
44 | 0x08B0O 4 Reserved
45 | 0x08B4 4 Reserved
46 | 0x08B8 | 4 |WakeUp_IRQ O WKPU
47 |0x08BC| 4 |WakeUp IRQ 1 WKPU
48 | 0x08CO| 4 |WakeUp IRQ 2 WKPU
49 | 0x08C4 4 Reserved
50 | 0x08C8 4 Reserved
51 | Ox08CC 4 Safe Mode Interrupt MC_ME
52 | 0x08D0O 4 Mode Transition Interrupt MC_ME
53 | 0x08D4 4 Invalid Mode Interrupt MC_ME
54 | 0x08D8 4 Invalid Mode Config MC_ME
55 | 0x08DC 4 Reserved
56 | OxO8EO 4 E\L/Jgrﬁlic;]rt]zlrrir;? gsis,_ti%it():tlve reset alternate MC_RGM
57 | OxO8E4 4 FXOSC counter expired (ipi_int_osc) FXOsC
58 | OxO8E8 4 Reserved
59 | OX08EC 4 PITimer Channel O PIT
60 | OxO8FO 4 PITimer Channel 1 PIT
61 | Ox08F4 4 PITimer Channel 2 PIT
62 | OxO8F8 4 |ADC_EOC ADC_0
63 | OXO8FC 4 Reserved
64 | 0x0900 4 ADC_WD ADC_0
65 | 00904 | 4 |FlexCAN_ESR[ERR_INT] FlexCAN_O
280/888 DoclD14629 Rev 9 "_l

RM0017 Interrupt Controller (INTC)
Table 123. Interrupt vector table(Continued)
IRQ #| Offset Size Interrupt Module
(bytes)
66 | 0x0908 4 FlexCAN_ESR_BOFF |
FlexCAN_Transmit_Warning | FlexCAN_O
FlexCAN_Receive_Warning
67 | 0x090C 4 Reserved
68 | 0x0910 4 |FlexCAN_BUF 00 03 FlexCAN_O
69 | 0x0914 4 |FlexCAN_BUF 04 07 FlexCAN_O
70 | 0x0918 4 |FlexCAN_BUF 08 _11 FlexCAN_O
71 | Ox091C 4 FlexCAN_BUF_12_15 FlexCAN_O
72 | 0x0920 4 FlexCAN_BUF_16_31 FlexCAN_O
73 | 0x0924 4 |FlexCAN_BUF_32_63 FlexCAN_0O
74 | 0x0928 4 |DSPI_SR[TFUF]
DSPI_SR[RFOF] DSPI_0
75 | 0x092C | 4 |DSPI_SR[EOQF] DSPI_0
76 | 0x0930 4 DSPI_SR[TFFF] DSPI_0O
77 | 0x0934 4 |DSPI_SR[TCF] DSPI_0
78 | 0x0938 4 |DSPI_SR[RFDF] DSPI_0
79 | 0x093C 4 LINFlex_RXI LINFlex_0
80 | 0x0940 4 LINFlex_TXI LINFlex_0O
81 | 0x0944 4 LINFlex_ERR LINFlex_0
82 | 0x0948 4 Reserved
83 | 0x094C 4 Reserved
84 | 0x0950 4 Reserved
85 | 0x0954 4 |FlexCAN_ESR[ERR_INT] FlexCAN_1
86 | 0x0958 4 FlexCAN_ESR_BOFF |
FlexCAN_Transmit_Warning | FlexCAN_1
FlexCAN_Receive_Warning
87 | 0x095C 4 Reserved
88 | 0x0960 4 |FlexCAN_BUF_00_03 FlexCAN_1
89 | 0x0964 4 |FlexCAN_BUF_04 07 FlexCAN_1
90 | 0x0968 4 |FlexCAN_BUF 08 11 FlexCAN_1
91 |0x096C | 4 |FlexCAN_BUF 12 15 FlexCAN_1
92 | 0x0970 4 |FlexCAN_BUF 16 31 FlexCAN_1
93 | 0x0974 4 |FlexCAN_BUF_32 63 FlexCAN_1
94 | 0x0978 4 |DSPI_SR[TFUF]
DSPI_SR[RFOF] DSPI_1

3

DoclD14629 Rev 9

281/888

Interrupt Controller (INTC)

RMO0017

Table 123. Interrupt vector table(Continued)

IRQ #| Offset (bSyitzees) Interrupt Module

95 | 0x097C 4 DSPI_SR[EOQF] DSPI_1
96 0x0980 4 DSPI_SR[TFFF] DSPI_1
97 | 0x0984 4 |DSPI_SR[TCF] DSPI_1
98 0x0988 4 DSPI_SR[RFDF] DSPI_1
99 | 0x098C 4 LINFlex_RXI LINFlex_1
100 | 0x0990 4 LINFlex_TXI LINFlex_1
101 | Ox0994 4 LINFlex_ERR LINFlex_1
102 | 0x0998 4 Reserved
103 | 0x099C 4 Reserved
104 | Ox09A0 4 Reserved
105 | 0X09A4 | 4 |FlexCAN_[ERR_INT] FlexCAN_2
106 | Ox09AS8 4 FlexCAN_ESR_BOFF |

FlexCAN_Transmit_Warning | FlexCAN_2

FlexCAN_Receive_Warning
107 | OX09AC 4 Reserved
108 | Ox09BO | 4 |FlexCAN_BUF_00 03 FlexCAN_2
109 | Ox09B4 | 4 |FlexCAN_BUF_04 07 FlexCAN_2
110 | 0x09B8 4 |FlexCAN_BUF 08 11 FlexCAN_2
111 |O0X09BC| 4 |FlexCAN_BUF_12 15 FlexCAN_2
112 | 0x09CO | 4 |FlexCAN_BUF_16 31 FlexCAN_2
113 | 0x09C4 | 4 |FlexCAN_BUF_32_63 FlexCAN_2
114 | Ox09C8 4 DSPI_SR[TFUF]

DSPI_SR[RFOF] DSPI_2
115 [0x09CC| 4 |DSPI_SR[EOQF] DSPI_2
116 | 0x09DO | 4 |DSPI_SR[TFFF] DSPI_2
117 | Ox09D4 4 DSPI_SR[TCF] DSPI_2
118 | 0x09D8 | 4 |DSPI_SR[RFDF] DSPI_2
119 | Ox09DC 4 LINFlex_RXI LINFlex_2
120 | OxO9EO 4 LINFlex_TXI LINFlex_2
121 | OxO9E4 4 LINFlex_ERR LINFlex_2
122 | OxO9ES8 4 LINFlex_RXI LINFlex_3
123 | OX09EC 4 LINFlex_TXI LINFlex_3
124 | Ox09FO0 4 LINFlex_ERR LINFlex_3

282/888 DoclD14629 Rev 9 "_l

RM0017 Interrupt Controller (INTC)
Table 123. Interrupt vector table(Continued)
IRQ #| Offset Size Interrupt Module
(bytes)

125 | Ox09F4 4 12C_SRJ[IBAL]

I2C_SR[TCF] 12C_0

I2C_SR[IAAS]
126 | Ox09F8 4 Reserved
127 | OXO9FC 4 PITimer Channel 3 PIT
128 | OxO0A00 4 PITimer Channel 4 PIT
129 | Ox0A04 4 PITimer Channel 5 PIT
130 | OxOA08 4 Reserved
131 | OXxOAOC 4 Reserved
132 | Ox0A10 4 Reserved
133 | Ox0A14 4 Reserved
134 | Ox0A18 4 Reserved
135 | OX0A1C 4 Reserved
136 | 0XO0A20 4 Reserved
137 | Ox0A24 4 Reserved
138 | Ox0A28 4 Reserved
139 | Ox0A2C 4 Reserved
140 | Ox0A30 4 Reserved
141 | Ox0A34 | 4 |EMIOS_GFR[FO,F1] eMIOS_0
142 | Ox0A38 4 EMIOS_GFR[F2,F3] eMIOS_0
143 | OxO0A3C 4 EMIOS_GFRI[F4,F5] eMIOS_0
144 | Ox0A40 4 EMIOS_GFR[F6,F7] eMIOS_0
145 | Ox0A44 4 EMIOS_GFR[F8,F9] eMIOS_0
146 | OxOA48 4 EMIOS_GFR[F10,F11] eMIOS_0
147 |Ox0A4C| 4 |EMIOS_GFR[F12,F13] eMIOS_0
148 | OX0OA50 | 4 |EMIOS_GFR[F14,F15] eMIOS_0
149 | Ox0A54 | 4 |EMIOS_GFR[F16,F17] eMIOS_0
150 | OxOA58 4 EMIOS_GFR[F18,F19] eMIOS_0
151 | OxOA5C 4 EMIOS_GFR[F20,F21] eMIOS_0
152 | 0xOA60 4 EMIOS_GFR[F22,F23] eMIOS_0
153 | Ox0A64 | 4 |EMIOS_GFR[F24,F25] eMIOS_0
154 | Ox0A68 | 4 |EMIOS_GFR[F26,F27] eMIOS_0
155 | OxOA6C 4 Reserved
156 | Ox0A70 4 Reserved

3

DoclD14629 Rev 9

283/888

Interrupt Controller (INTC)

RMO0017

Table 123. Interrupt vector table(Continued)

IRQ #| Offset (bSyitzees) Interrupt Module
Section D (Device specific vectors)

157 | Ox0A74 4 EMIOS_GFR[FO,F1] eMIOS_1
158 | OX0A78 | 4 |EMIOS_GFR[F2,F3] eMIOS_1
159 | Ox0A7C 4 EMIOS_GFR[F4,F5] eMIOS_1
160 | OX0A80 | 4 |EMIOS_GFR[F6,F7] eMIOS 1
161 | OxOA84 4 EMIOS_GFR[F8,F9] eMIOS_1
162 | OxOA88 4 EMIOS_GFR[F10,F11] eMIOS_1
163 | OXOA8C 4 EMIOS_GFR[F12,F13] eMIOS_1
164 | OX0A90 | 4 |EMIOS_GFR[F14,F15] eMIOS_1
165 | Ox0A94 4 EMIOS_GFR[F16,F17] eMIOS_1
166 | OX0A98 | 4 |EMIOS_GFR[F18,F19] eMIOS_1
167 | OxOA9C 4 EMIOS_GFR[F20,F21] eMIOS_1
168 | OXOAAO 4 EMIOS_GFR[F22,F23] eMIOS_1
169 | Ox0AA4 4 EMIOS_GFR[F24,F25] eMIOS_1
170 | OX0AA8 | 4 |EMIOS_GFR[F26,F27] eMIOS_1
171 | OXOAAC 4 Reserved
172 | 0x0ABO 4 Reserved
173 | OxOAB4 4 FlexCAN_ESR FlexCAN_3
174 | OxOAB8 4 FlexCAN_ESR_BOFF |

FlexCAN_Transmit_Warning | FlexCAN_3

FlexCAN_Receive_Warning
175 | OXOABC 4 Reserved
176 |OXOACO| 4 |FlexCAN_BUF 0 3 FlexCAN_3
177 |OX0AC4| 4 |FlexCAN BUF 4 7 FlexCAN_3
178 | OXOAC8| 4 |FlexCAN_BUF 8 11 FlexCAN_3
179 |OXOACC| 4 |FlexCAN_BUF 12 15 FlexCAN_3
180 | OxOADO 4 FlexCAN_BUF_16_31 FlexCAN_3
181 |Ox0AD4 | 4 |FlexCAN_BUF_32 63 FlexCAN_3
182 | OXOADS8 4 Reserved
183 | OXOADC 4 Reserved
184 | OXOAEO 4 Reserved
185 | OXxOAE4 4 Reserved
186 | OxOAES8 4 Reserved
187 | OXOAEC 4 Reserved

284/888 DoclD14629 Rev 9 "_l

RMO0017

Interrupt Controller (INTC)

Table 123. Interrupt vector table(Continued)

IRQ #| Offset (bSyitzees) Interrupt Module
188 | OxOAFO 4 Reserved
189 | OxOAF4 4 Reserved
190 | OXOAF8 4 FlexCAN_ESR FlexCAN_4
191 | OXOAFC 4 FlexCAN_ESR_BOFF |
FlexCAN_Transmit_Warning | FlexCAN_4
FlexCAN_Receive_Warning
192 | 0xOB0OO 4 Reserved
193 | 0x0B04 | 4 |FlexCAN_BUF 0 _3 FlexCAN_4
194 | 0x0BO8 | 4 |FlexCAN_BUF 4 7 FlexCAN_4
195 | 0xOBOC | 4 |FlexCAN_BUF 8 11 FlexCAN_4
196 | OxOB10 | 4 |FlexCAN_BUF 12 15 FlexCAN_4
197 | 0x0B14 | 4 |FlexCAN_BUF 16 31 FlexCAN_4
198 | 0x0B18 | 4 |FlexCAN_BUF_32_63 FlexCAN_4
199 | 0x0OB1C 4 Reserved
200 | 0x0B20 4 Reserved
201 | Ox0B24 4 Reserved
202 | Ox0B28 4 FlexCAN_ESR FlexCAN_5
203 | Ox0B2C 4 FlexCAN_ESR_BOFF |
FlexCAN_Transmit_Warning | FlexCAN_5
FlexCAN_Receive_Warning
204 | 0x0B30 4 Reserved
205 | OxOB34| 4 |FlexCAN_BUF 0 3 FlexCAN_5
206 | OxOB38| 4 |FlexCAN_BUF 4 7 FlexCAN_5
207 |0xOB3C| 4 |FlexCAN_BUF 8 11 FlexCAN_5
208 | Ox0B40 4 FlexCAN_BUF_12_15 FlexCAN_5
209 | 0xOB44 | 4 |FlexCAN_BUF_16_31 FlexCAN_5
210 | 0xOB48 | 4 |FlexCAN_BUF_32_63 FlexCAN_5
211 | Ox0B4C 4 Reserved
212 | 0xOB50 4 Reserved
213 | 0xOB54 4 Reserved
214 | 0x0OB58 4 Reserved
215 | 0x0B5C 4 Reserved
216 | 0x0B60 4 Reserved

3

DoclD14629 Rev 9

285/888

Interrupt Controller (INTC) RM0017

16.6.1

16.6.1.1

16.6.1.2

16.6.1.3

16.6.2

16.6.2.1

16.6.2.1.1

286/888

Interrupt request sources

The INTC has two types of interrupt requests, peripheral and software configurable. These
interrupt requests can assert on any clock cycle.

Peripheral interrupt requests

An interrupt event in a peripheral’s hardware sets a flag bit that resides in the peripheral. The
interrupt request from the peripheral is driven by that flag bit.

The time from when the peripheral starts to drive its peripheral interrupt request to the INTC
to the time that the INTC starts to drive the interrupt request to the processor is three clocks.

External interrupts are handled by the SIU (see Section 19.6.3: External interrupts).

Software configurable interrupt requests

An interrupt request is triggered by software by writing a 1 to a SETx bitin INTC_SSCIR0_3—
INTC_SSCIR4_7. This write sets the corresponding flag bit, CLRX, resulting in the interrupt
request. The interrupt request is cleared by writing a 1 to the CLRXx bit.

The time from the write to the SETx bit to the time that the INTC starts to drive the interrupt
request to the processor is four clocks.

Unigue vector for each interrupt request source

Each peripheral and software configurable interrupt request is assigned a hardwired unique
9-bit vector. Software configurable interrupts 0—7 are assigned vectors 0—7 respectively. The
peripheral interrupt requests are assigned vectors 8 to as high as needed to include all the
peripheral interrupt requests. The peripheral interrupt request input ports at the boundary of
the INTC block are assigned specific hardwired vectors within the INTC (see Table 114).

Priority management

The asserted interrupt requests are compared to each other based on their PRIx values set
in the INTC Priority Select Registers (INTC_PSR0O_3-INTC_PSR208 210). The result is
compared to PRI in the associated INTC_CPR. The results of those comparisons manage
the priority of the ISR executed by the associated processor. The associated LIFO also
assists in managing that priority.

Current priority and preemption

The priority arbitrator, selector, encoder, and comparator subblocks shown in Figure 117
compare the priority of the asserted interrupt requests to the current priority. If the priority of
any asserted peripheral or software configurable interrupt request is higher than the current
priority for a given processor, then the interrupt request to the processor is asserted. Also, a
unigue vector for the preempting peripheral or software configurable interrupt request is
generated for INTC interrupt acknowledge register (INTC_IACKR), and if in hardware vector
mode, for the interrupt vector provided to the processor.

Priority arbitrator subblock

The priority arbitrator subblock for each processor compares all the priorities of all of the
asserted interrupt requests assigned to that processor, both peripheral and software
configurable. The output of the priority arbitrator subblock is the highest of those priorities

DoclD14629 Rev 9 ‘Yl

RMO0017

Interrupt Controller (INTC)

16.6.2.1.2

16.6.2.1.3

16.6.2.1.4

16.6.2.2

3

assigned to a given processor. Also, any interrupt requests which have this highest priority
are output as asserted interrupt requests to the associated request selector subblock.

Request selector subblock

If only one interrupt request from the associated priority arbitrator subblock is asserted, then
it is passed as asserted to the associated vector encoder subblock. If multiple interrupt
requests from the associated priority arbitrator subblock are asserted, the only the one with
the lowest vector is passed as asserted to the associated vector encoder subblock. The lower
vector is chosen regardless of the time order of the assertions of the peripheral or software
configurable interrupt requests.

Vector encoder subblock

The vector encoder subblock generates the unique 9-bit vector for the asserted interrupt
request from the request selector subblock for the associated processor.

Priority Comparator subblock

The priority comparator subblock compares the highest priority output from the priority
arbitrator subblock with PRI in INTC_CPR. If the priority comparator subblock detects that
this highest priority is higher than the current priority, then it asserts the interrupt request to
the associated processor. This interrupt request to the processor asserts whether this highest
priority is raised above the value of PRI in INTC_CPR or the PRI value in INTC_CPR is
lowered below this highest priority. This highest priority then becomes the new priority which
will be written to PRI in INTC_CPR when the interrupt request to the processor is
acknowledged. Interrupt requests whose PRIn in INTC_PSRn are zero will not cause a
preemption because their PRIn will not be higher than PRI in INTC_CPR.

Last-In First-Out (LIFO)

The LIFO stores the preempted PRI values from the INTC_CPR. Therefore, because these
priorities are stacked within the INTC, if interrupts need to be enabled during the ISR, at the
beginning of the interrupt exception handler the PRI value in the INTC_CPR does not need
to be loaded from the INTC_CPR and stored onto the context stack. Likewise at the end of
the interrupt exception handler, the priority does not need to be loaded from the context stack
and stored into the INTC_CPR.

The PRI value in the INTC_CPR is pushed onto the LIFO when the INTC_IACKR is read in
softwarevector mode or the interrupt acknowledge signal from the processor is asserted in
hardware vector mode. The priority is popped into PRI in the INTC_CPR whenever the
INTC_EOIR is written.

Although the INTC supports 16 priorities, an ISR executing with PRI in the INTC_CPR equal
to 15 will not be preempted. Therefore, the LIFO supports the stacking of 15 priorities.
However, the LIFO is only 14 entries deep. An entry for a priority of O is not needed because
of how pushing onto a full LIFO and popping an empty LIFO are treated. If the LIFO is pushed
15 or more times than it is popped, the priorities first pushed are overwritten. A priority of O
would be an overwritten priority. However, the LIFO will pop ‘0’s if it is popped more times
than it is pushed. Therefore, although a priority of 0 was overwritten, it is regenerated with
the popping of an empty LIFO.

The LIFO is not memory mapped.

DoclD14629 Rev 9 287/888

Interrupt Controller (INTC) RM0017

16.6.3

16.6.3.1

16.6.3.1.1

16.6.3.1.2

Note:

288/888

Handshaking with processor

Software vector mode handshaking

This section describes handshaking in software vector mode.

Acknowledging interrupt request to processor

A timing diagram of the interrupt request and acknowledge handshaking in software vector
mode, along with the handshaking near the end of the interrupt exception handler, is shown
in Figure 127. The INTC examines the peripheral and software configurable interrupt
requests. When it finds an asserted peripheral or software configurable interrupt request with
a higher priority than PRI in the associated INTC_CPR, it asserts the interrupt request to the
processor. The INTVEC field in the associated INTC_IACKR is updated with the preempting
interrupt request’s vector when the interrupt request to the processor is asserted. The
INTVEC field retains that value until the next time the interrupt request to the processor is
asserted. The rest of the handshaking is described in Section 16.4.1.1: Software vector
mode.

End of interrupt exception handler

Before the interrupt exception handling completes, INTC end-of-interrupt register
(INTC_EOIR) must be written.When written, the associated LIFO is popped so the
preempted priority is restored into PRI of the INTC_CPR. Before it is written, the peripheral
or software configurable flag bit must be cleared so that the peripheral or software
configurable interrupt request is negated.

To ensure proper operation across all Power Architecture® MCUs, execute an MBAR or
MSYNC instruction between the access to clear the flag bit and the write to the INTC_EOIR.

When returning from the preemption, the INTC does not search for the peripheral or software
settable interrupt request whose ISR was preempted. Depending on how much the ISR
progressed, that interrupt request may no longer even be asserted. When PRI in INTC_CPR
is lowered to the priority of the preempted ISR, the interrupt request for the preempted ISR
or any other asserted peripheral or software settable interrupt request at or below that priority
will not cause a preemption. Instead, after the restoration of the preempted context, the
processor will return to the instruction address that it was to next execute before it was
preempted. This next instruction is part of the preempted ISR or the interrupt exception
handler’s prolog or epilog.

3

DoclD14629 Rev 9

RM0017 Interrupt Controller (INTC)
wm-- R [
Clock AVAVAVAVAY U\ AVAvAVAY
Interrupt request to processor / == \ -
Hardware vector enable L [
Interrupt vector =mm= -
Interrupt acknowledge - [

Read INTC_IACKR . j_\ S

Write INTC_EOIR ———— R /_'\

INTVEC in INTC_IACKR 0 X ==== 108 ne==
PRI in INTC_CPR 0 - X [1 X 0
Peripheral interrupt request 100 / - "mmm _\

16.6.3.2

3

Figure 127. Software vector mode handshaking timing diagram

Hardware vector mode handshaking

A timing diagram of the interrupt request and acknowledge handshaking in hardware vector
mode, along with the handshaking near the end of the interrupt exception handler, is shown
in Figure 128. As in software vector mode, the INTC examines the peripheral and software
settable interrupt requests, and when it finds an asserted one with a higher priority than PRI
in INTC_CPR, it asserts the interrupt request to the processor. The INTVEC field in the
INTC_IACKR is updated with the preempting peripheral or software settable interrupt
request’s vector when the interrupt request to the processor is asserted. The INTVEC field
retains that value until the next time the interrupt request to the processor is asserted. In
addition, the value of the interrupt vector to the processor matches the value of the INTVEC
field in the INTC_IACKR. The rest of the handshaking is described in Section 16.7.2.2:
Hardware vector mode.

The handshaking near the end of the interrupt exception handler, that is the writing to the
INTC_EOIR, is the same as in software vector mode. Refer to Section 16.6.3.1.2: End of
interrupt exception handler.

DocID14629 Rev 9 289/888

Interrupt Controller (INTC) RM0017

[crock AVASAVANAVAVAVLSAVAVAVAWA
Interrupt request to processor / \ S
|Hardware vector enable S
Interrupt vector 0 X 108 nmaa
Interrupt acknowledge [T\ |a---
[Read INTC_IACKR R
Write INTC_EOIR R /_ \
INTVEC in INTC_IACKR 0 X 108 —-—--
PRI in INTC_CPR 0 X R 1 X 0
Peripheral interrupt request 100 / ===

Figure 128. Hardware vector mode handshaking timing diagram

16.7 Initialization/application information

16.7.1 Initialization flow

After exiting reset, all of the PRIn fields in INTC priority select registers (INTC_PSRO-
INTC_PSR210) will be zero, and PRI in INTC current priority register (INTC_CPR) will be 15.
These reset values will prevent the INTC from asserting the interrupt request to the
processor. The enable or mask bits in the peripherals are reset such that the peripheral
interrupt requests are negated. An initialization sequence for allowing the peripheral and
software settable interrupt requests to cause an interrupt request to the processor
is:interrupt_request _initialization:

interrupt_request_initialization:

configure VTES and HVEN in INTC_MCR

configure VTBA in INTC_IACKR

raise the PRIn fields in INTC_PSRn

set the enable bits or clear the mask bits for the peripheral interrupt

requests

lower PRI in INTC _CPR to zero

enable processor recognition of interrupts

16.7.2 Interrupt exception handler

These example interrupt exception handlers use Power Architecture™ assembly code.

290/888 DoclD14629 Rev 9 ‘Yl

RMO0017

Interrupt Controller (INTC)

16.7.2.1

3

Software vector mode

interrupt_exception_handler:
code to create stack frame, save working register, and save SRRO and SRR1
lis r3,INTC IACKR@ha # form adjusted upper half of INTC IACKR address

lwz r3,INTC_IACKR@l (r3) # load INTC_ IACKR, which clears request to
processor

lwz r3,0x0(r3) # load address of ISR from vector table

wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

mtlr r3 # move INTC_IACKR contents into link register
blrl # branch to ISR; link register updated with epilog

address

epilog:

code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the
disabling of processor

recognition of interrupts eases the calculation of the maximum stack depth
at the cost of

postponing the servicing of the next interrupt request.

mbar # ensure store to clear flag bit has completed

lis r3,INTC_EOIR@ha # form adjusted upper half of INTC EOIR address
1i r4,0x0 # form 0 to write to INTC_EOIR

wrteei 0 # disable processor recognition of interrupts

stw r4, INTC EOIR@I (r3) # store to INTC EOIR, informing INTC to lower
priority

code to restore SRRO and SRR1, restore working registers, and delete stack
frame

rfi

vector table base address:

address of ISR for interrupt with vector 0

address of ISR for interrupt with vector 1

address of ISR for interrupt with vector 510

address of ISR for interrupt with vector 511

ISRx:

DoclD14629 Rev 9 291/888

Interrupt Controller (INTC) RM0017

16.7.2.2

292/888

code to service the interrupt event

code to clear flag bit which drives interrupt request to INTC

blr # return to epilog

Hardware vector mode

This interrupt exception handler is useful with processor and system bus implementations
which support a hardware vector. This example assumes that each
interrupt_exception_handlerx only has space for four instructions, and therefore a branch to
interrupt_exception_handler_continuedx is needed.

interrupt exception handlerx:

b interrupt exception handler continuedx# 4 instructions available, branch
to continue

interrupt exception handler continuedx:

code to create stack frame, save working register, and save SRRO and SRR1
wrteei 1 # enable processor recognition of interrupts
code to save rest of context required by e500 EABI

bl ISRx # branch to ISR for interrupt with vector x

epilog:

code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the
disabling of processor

recognition of interrupts eases the calculation of the maximum stack depth
at the cost of

postponing the servicing of the next interrupt request.

mbar # ensure store to clear flag bit has completed

lis r3,INTC_EOIR@ha # form adjusted upper half of INTC EOIR address
1i r4,0x0 # form O to write to INTC EOIR

wrteei 0 # disable processor recognition of interrupts

stw r4, INTC EOIR@I (r3) # store to INTC EOIR, informing INTC to lower
priority

code to restore SRRO and SRR1, restore working registers, and delete stack
frame

rfi

ISRx:

DoclD14629 Rev 9

3

RMO0017

Interrupt Controller (INTC)

16.7.3

16.7.4

code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # branch to epilog

ISR, RTOS, and task hierarchy

The RTOS and all of the tasks under its control typically execute with PRI in INTC current
priority register (INTC_CPR) having a value of 0. The RTOS will execute the tasks according
to whatever priority scheme that it may have, but that priority scheme is independent and has
a lower priority of execution than the priority scheme of the INTC. In other words, the ISRs
execute above INTC_CPR priority 0 and outside the control of the RTOS, the RTOS executes
at INTC_CPR priority 0, and while the tasks execute at different priorities under the control
of the RTOS, they also execute at INTC_CPR priority 0.

If a task shares a resource with an ISR and the PCP is being used to manage that shared
resource, then the task’s priority can be elevated in the INTC_CPR while the shared resource
is being accessed.

An ISR whose PRIn in INTC priority select registers (INTC_PSRO-INTC_PSR210) has a
value of O will not cause an interrupt request to the processor, even if its peripheral or
software settable interrupt request is asserted. For a peripheral interrupt request, not setting
its enable bit or disabling the mask bit will cause it to remain negated, which consequently
also will not cause an interrupt request to the processor. Since the ISRs are outside the
control of the RTOS, this ISR will not run unless called by another ISR or the interrupt
exception handler, perhaps after executing another ISR.

Order of execution

An ISR with a higher priority can preempt an ISR with a lower priority, regardless of the
unigue vectors associated with each of their peripheral or software configurable interrupt
reguests. However, if multiple peripheral or software configurable interrupt requests are
asserted, more than one has the highest priority, and that priority is high enough to cause
preemption, the INTC selects the one with the lowest unique vector regardless of the order
in time that they asserted. However, the ability to meet deadlines with this scheduling scheme
is no less than if the ISRs execute in the time order that their peripheral or software
configurable interrupt requests asserted.

The example in Table 124 shows the order of execution of both ISRs with different priorities
and the same priority.

Table 124. Order of ISR execution example

Step
No.

Code Executing at End of Step PRIin

INTC_CPR
at End of
Step

Step description ISR108 Interrupt
RTOS @ ISR208 | ISR308 | ISR408 | exception

handler

1 |RTOS at priority 0 is executing. X 0

2 | Peripheral interrupt request 100 at X 1

priority 1 asserts. Interrupt taken.

3 | Peripheral interrupt request 400 at X 4

priority 4 is asserts. Interrupt taken.

3

DocID14629 Rev 9 293/888

Interrupt Controller (INTC) RM0017

Table 124. Order of ISR execution example(Continued)

Code Executing at End of Step PRI in
S’\E(e)p Step description ISR108 Interrupt I':t-rgag';?
' RTOS @ ISR208 | ISR308 | ISR408 | exception St
handler ep
4 |Peripheral interrupt request 300 at X 4
priority 3 is asserts.
5 | Peripheral interrupt request 200 at X 4
priority 3 is asserts.
6 ISR408 completes. Interrupt X 1
exception handler writes to
INTC_EOIR.
7 Interrupt taken. ISR208 starts to X 3
execute, even though peripheral
interrupt request 300 asserted first.
8 ISR208 completes. Interrupt X 1
exception handler writes to
INTC_EOIR.
9 Interrupt taken. ISR308 starts to X 3
execute.
10 |ISR308 completes. Interrupt X 1
exception handler writes to
INTC_EOIR.
11 |ISR108 completes. Interrupt X 0
exception handler writes to
INTC_EOIR.
12 | RTOS continues execution. X 0
1. ISR108 executes for peripheral interrupt request 100 because the first eight ISRs are for software configurable interrupt
requests.
16.7.5 Priority ceiling protocol
16.7.5.1 Elevating priority

294/888

The PRI field in INTC_CPR is elevated in the OSEK PCP to the ceiling of all of the priorities
of the ISRs that share a resource. This protocol allows coherent accesses of the ISRs to that
shared resource.

For example, ISR1 has a priority of 1, ISR2 has a priority of 2, and ISR3 has a priority of 3.
They share the same resource. Before ISR1 or ISR2 can access that resource, they must
raise the PRI value in INTC_CPR to 3, the ceiling of all of the ISR priorities. After they release
the resource, the PRI value in INTC_CPR can be lowered. If they do not raise their priority,
ISR2 can preempt ISR1, and ISR3 can preempt ISR1 or ISR2, possibly corrupting the shared
resource. Another possible failure mechanism is deadlock if the higher priority ISR needs the
lower priority ISR to release the resource before it can continue, but the lower priority ISR
cannot release the resource until the higher priority ISR completes and execution returns to
the lower priority ISR.

DoclD14629 Rev 9 ‘Yl

RMO0017

Interrupt Controller (INTC)

16.7.5.2

16.7.6

16.7.7

3

Using the PCP instead of disabling processor recognition of all interrupts eliminates the time
when accessing a shared resource that all higher priority interrupts are blocked. For example,
while ISR3 cannot preempt ISR1 while it is accessing the shared resource, all of the ISRs
with a priority higher than 3 can preempt ISR1.

Ensuring coherency

A scenario can cause non-coherent accesses to the shared resource. For example, ISR1 and
ISR2 are both running on the same core and both share a resource. ISR1 has a lower priority
than ISR2. ISR1 is executing and writes to the INTC_CPR. The instruction following this store
is a store to a value in a shared coherent data block. Eitherimmediately before or at the same
time as the first store, the INTC asserts the interrupt request to the processor because the
peripheral interrupt request for ISR2 has asserted. As the processor is responding to the
interrupt request from the INTC, and as it is aborting transactions and flushing its pipeline, it
is possible that both stores will be executed. ISR2 thereby thinks that it can access the data
block coherently, but the data block has been corrupted.

OSEK uses the GetResource and ReleaseResource system services to manage access to
a shared resource. To prevent corruption of a coherent data block, modifications to PRI in
INTC_CPR can be made by those system services with the code sequence:

disable processor recognition of interrupts

PRI modification

enable processor recognition of interrupts

Selecting priorities according to request rates and deadlines

The selection of the priorities for the ISRs can be made using rate monotonic scheduling
(RMS) or a superset of it, deadline monotonic scheduling (DMS). In RMS, the ISRs which
have higher request rates have higher priorities. In DMS, if the deadline is before the next
time the ISR is requested, then the ISR is assigned a priority according to the time from the
request for the ISR to the deadline, not from the time of the request for the ISR to the next
request for it.

For example, ISR1 executes every 100 us, ISR2 executes every 200 us, and ISR3 executes
every 300 ps. ISR1 has a higher priority than ISR2 which has a higher priority than ISR3;
however, if ISR3 has a deadline of 150 ps, then it has a higher priority than ISR2.

The INTC has 16 priorities, which may be less than the number of ISRs. In this case, the ISRs
should be grouped with other ISRs that have similar deadlines. For example, a priority could
be allocated for every time the request rate doubles. ISRs with request rates around 1 ms
would share a priority, ISRs with request rates around 500 us would share a priority, ISRs
with request rates around 250 us would share a priority, etc. With this approach, a range of
ISR request rates of 216 could be included, regardless of the number of ISRs.

Reducing the number of priorities reduces the processor’s ability to meet its deadlines.
However, reducing the number of priorities can reduce the size and latency through the
interrupt controller. It also allows easier management of ISRs with similar deadlines that
share a resource. They do not need to use the PCP to access the shared resource.

Software configurable interrupt requests

The software configurable interrupt requests can be used in two ways. They can be used to
schedule a lower priority portion of an ISR and they may also be used by processors to
interrupt other processors in a multiple processor system.

DoclD14629 Rev 9 295/888

Interrupt Controller (INTC) RM0017

16.7.7.1

16.7.7.2

16.7.8

Note:

296/888

Scheduling a lower priority portion of an ISR

A portion of an ISR needs to be executed at the PRIx value in the INTC Priority Select
Registers (INTC_PSRO_3-INTC_PSR208_210), which becomes the PRI value in
INTC_CPR with the interrupt acknowledge. The ISR, however, can have a portion that does
not need to be executed at this higher priority. Therefore, executing the later portion that does
not need to be executed at this higher priority can prevent the execution of ISRs which do not
have a higher priority than the earlier portion of the ISR but do have a higher priority than
what the later portion of the ISR needs. This preemptive scheduling inefficiency reduces the
processor’s ability to meet its deadlines.

One option is for the ISR to complete the earlier higher priority portion, but then schedule
through the RTOS a task to execute the later lower priority portion. However, some RTOSs
can require a large amount of time for an ISR to schedule a task. Therefore, a second option
is for the ISR, after completing the higher priority portion, to set a SETx bit in
INTC_SSCIR0O_3-INTC_SSCIR4_7. Writing a 1 to SETx causes a software configurable
interrupt request. This software configurable interrupt request will usually have a lower PRIx
value in the INTC_PSRx_x and will not cause preemptive scheduling inefficiencies. After
generating a software settable interrupt request, the higher priority ISR completes. The lower
priority ISR is scheduled according to its priority. Execution of the higher priority ISR is not
resumed after the completion of the lower priority ISR.

Scheduling an ISR on another processor

Because the SETx bits in the INTC_SSCIRx_x are memory mapped, processors in multiple-
processor systems can schedule ISRs on the other processors. One application is that one
processor wants to command another processor to perform a piece of work and the initiating
processor does not need to use the results of that work. If the initiating processor is
concerned that the processor executing the software configurable ISR has not completed the
work before asking it to again execute the ISR, it can check if the corresponding CLRx bit in
INTC_SSCIRx_x is asserted before again writing a 1 to the SETx bit.

Another application is the sharing of a block of data. For example, a first processor has
completed accessing a block of data and wants a second processor to then access it.
Furthermore, after the second processor has completed accessing the block of data, the first
processor again wants to access it. The accesses to the block of data must be done
coherently. To do this, the first processor writes a 1 to a SETx bit on the second processor.
After accessing the block of data, the second processor clears the corresponding CLRx bit
and then writes 1 to a SETx bit on the first processor, informing it that it can now access the
block of data.

Lowering priority within an ISR

A common method for avoiding preemptive scheduling inefficiencies with an ISR whose work
spans multiple priorities (see Section 16.7.7.1: Scheduling a lower priority portion of an ISR)
is to lower the current priority. However, the INTC has a LIFO whose depth is determined by
the number of priorities.

Lowering the PRI value in INTC_CPR within an ISR to below the ISR’s corresponding PRI
value in the INTC Priority Select Registers (INTC_PSR0_3-INTC_PSR208 210) allows
more preemptions than the LIFO depth can support.

Therefore, the INTC does not support lowering the current priority within an ISR as a way to
avoid preemptive scheduling inefficiencies.

DoclD14629 Rev 9 ‘Yl

RMO0017

Interrupt Controller (INTC)

16.7.9

16.7.9.1

16.7.9.2

16.7.9.3

16.7.10

3

Negating an interrupt request outside of its ISR

Negating an interrupt request as a side effect of an ISR

Some peripherals have flag bits that can be cleared as a side effect of servicing a peripheral
interrupt request. For example, reading a specific register can clear the flag bits and their
corresponding interrupt requests. This clearing as a side effect of servicing a peripheral
interrupt request can cause the negation of other peripheral interrupt requests besides the
peripheral interrupt request whose ISR presently is executing. This negating of a peripheral
interrupt request outside of its ISR can be a desired effect.

Negating multiple interrupt requests in one ISR

An ISR can clear other flag bits besides its own. One reason that an ISR clears multiple flag
bits is because it serviced those flag bits, and therefore the ISRs for these flag bits do not
need to be executed.

Proper setting of interrupt request priority

Whether an interrupt request negates outside its own ISR due to the side effect of an ISR
execution or the intentional clearing a flag bit, the priorities of the peripheral or software
configurable interrupt requests for these other flag bits must be selected properly. Their PRIx
values in the INTC Priority Select Registers (INTC_PSRO0O_3-INTC_PSR208 210) must be
selected to be at or lower than the priority of the ISR that cleared their flag bits. Otherwise,
those flag bits can cause the interrupt request to the processor to assert. Furthermore, the
clearing of these other flag bits also has the same timing relationship to the writing to
INTC_SSCIR0_3-INTC_SSCIR4_7 as the clearing of the flag bit that caused the present ISR
to be executed (see Section 16.6.3.1.2: End of interrupt exception handler).

A flag bit whose enable bit or mask bit negates its peripheral interrupt request can be cleared
at any time, regardless of the peripheral interrupt request’s PRIx value in INTC_PSRx_x.

Examining LIFO contents

In normal mode, the user does not need to know the contents of the LIFO. He may not even
know how deeply the LIFO is nested. However, if he wants to read the contents, such as in
debug mode, they are not memory mapped. The contents can be read by popping the LIFO
and reading the PRI field in either INTC_CPR. The code sequence is:

pop_lifo:

store to INTC_EOIR

load INTC_CPR, examine PRI, and store onto stack

if PRI is not zero or value when interrupts were enabled, branch to

pop_lifo

When the examination is complete, the LIFO can be restored using this code sequence:

push_lifo:

load stacked PRI value and store to INTC_CPR

load INTC_IACKR

if stacked PRI values are not depleted, branch to push_lifo

DoclD14629 Rev 9 297/888

Crossbar Switch (XBAR)

RMO0017

17

17.1

17.2

298/888

Crossbar Switch (XBAR)

Introduction

This chapter describes the multi-port crossbar switch (XBAR), which supports simultaneous
connections between three master ports and three slave ports. XBAR supports a 32-bit
address bus width and a 32-bit data bus width at all master and slave ports.

Block diagram

Figure 129 shows a block diagram of the crossbar switch.

CPU CPU data
instructions

Master modules

Crossbar Switch

A A i Slave modules
Y \
Flash Internal Peripheral
memory SRAM bridges

Figure 129. XBAR block diagram

Table 125 gives the crossbar switch port for each master and slave, and the assigned and
fixed ID number for each master. The table shows the master ID numbers as they relate to
the master port numbers.

Table 125. XBAR switch ports for SPC560Bx and SPC560Cx

Port
Module Physical master ID
Type Logical number

€200z0 core—CPU instructions Master 0 0
€200z0 core—CPU data / Nexus Master 0 1
Flash memory Slave 0 —

Internal SRAM Slave 2 —
Peripheral bridges Slave 7 —

DoclD14629 Rev 9

3

RM0017 Crossbar Switch (XBAR)
17.3 Overview
The XBAR allows for concurrent transactions to occur from any master port to any slave port.
It is possible for all master ports and slave ports to be in use at the same time as a result of
independent master requests. If a slave port is simultaneously requested by more than one
master port, arbitration logic selects the higher priority master and grants it ownership of the
slave port. All other masters requesting that slave port are stalled until the higher priority
master completes its transactions.
Requesting masters are granted access based on a fixed priority.
17.4 Features
e 2 master ports:
— Core: €200z0 core instructions
— Core: €200z0 core data / Nexus
e 3 slave ports
— Flash (refer to the flash memory chapter for information on accessing flash
memory)
— Internal SRAM
— Peripheral bridges
e 32-bit address, 32-bit data paths
e Fully concurrent transfers between independent master and slave ports
e Fixed priority scheme and fixed parking strategy
17.5 Modes of operation
17.5.1 Normal mode
In normal mode, the XBAR provides the logic that controls crossbar switch configuration.
17.5.2 Debug mode
The XBAR operation in debug mode is identical to operation in normal mode.
17.6 Functional description
This section describes the functionality of the XBAR in more detail.
17.6.1 Overview

3

The main goal of the XBAR is to increase overall system performance by allowing multiple
masters to communicate concurrently with multiple slaves. To maximize data throughput, it
is essential to keep arbitration delays to a minimum.

This section examines data throughput from the point of view of masters and slaves, detailing
when the XBAR stalls masters, or inserts bubbles on the slave side.

DocID14629 Rev 9 299/888

Crossbar Switch (XBAR) RM0017

17.6.2

17.6.3

300/888

General operation

When a master makes an access to the XBAR from an idle master state, the access is taken
immediately by the XBAR. If the targeted slave port of the access is available (that is, the
requesting master is currently granted ownership of the slave port), the access is immediately
presented on the slave port. It is possible to make single clock (zero wait state) accesses
through the XBAR by a granted master. If the targeted slave port of the access is busy or
parked on a different master port, the requesting master receives wait states until the
targeted slave port can service the master request. The latency in servicing the request
depends on each master’s priority level and the responding slave’s access time.

Because the XBAR appears to be simply another slave to the master device, the master
device has no indication that it owns the slave port it is targeting. While the master does not
have control of the slave port it is targeting, it is wait-stated.

A master is given control of a targeted slave port only after a previous access to a different
slave port has completed, regardless of its priority on the newly targeted slave port. This
prevents deadlock from occurring when a master has the following conditions:

e Outstanding request to slave port A that has a long response time
e Pending access to a different slave port B
e Lower priority master also makes a request to the different slave port B.

In this case, the lower priority master is granted bus ownership of slave port B after a cycle
of arbitration, assuming the higher priority master slave port A access is not terminated.

After a master has control of the slave port it is targeting, the master remains in control of that
slave port until it gives up the slave port by running an IDLE cycle, leaves that slave port for
its next access, or loses control of the slave port to a higher priority master with a request to
the same slave port. However, because all masters run a fixed-length burst transfer to a slave
port, it retains control of the slave port until that transfer sequence is completed.

When a slave bus is idled by the XBAR, it is parked on the master which did the last transfer.

Master ports

A master access is taken if the slave port to which the access decodes is either currently
servicing the master or is parked on the master. In this case, the XBAR is completely
transparent and the master access is immediately transmitted on the slave bus and no
arbitration delays are incurred. A master access stall if the access decodes to a slave port
that is busy serving another master, parked on another master.

If the slave port is currently parked on another master, and no other master is requesting
access to the slave port, then only one clock of arbitration is incurred. If the slave port is
currently serving another master of a lower priority and the master has a higher priority than
all other requesting masters, then the master gains control over the slave port as soon as the
data phase of the current access is completed. If the slave port is currently servicing another
master of a higher priority, then the master gains control of the slave port after the other
master releases control of the slave port if no other higher priority master is also waiting for
the slave port.

A master access is responded to with an error if the access decodes to a location not
occupied by a slave port. This is the only time the XBAR directly responds with an error
response. All other error responses received by the master are the result of error responses
on the slave ports being passed through the XBAR.

DoclD14629 Rev 9 ‘Yl

RMO0017

Crossbar Switch (XBAR)

17.6.4

17.6.5

17.6.6

17.6.6.1

17.6.6.1.1

3

Slave ports

The goal of the XBAR with respect to the slave ports is to keep them 100% saturated when
masters are actively making requests. To do this the XBAR must not insert any bubbles onto
the slave bus unless absolutely necessary.

There is only one instance when the XBAR forces a bubble onto the slave bus when a master
is actively making a request. This occurs when a handoff of bus ownership occurs and there
are no wait states from the slave port. A requesting master which does not own the slave port
is granted access after a one clock delay.

Priority assignment

Each master port is assigned a fixed 3-bit priority level (hard-wired priority). The following
table shows the priority levels assigned to each master (the lowest has highest priority).

Table 126. Hardwired bus master priorities

Port
Module Priority level
Type Number

€200z0 core—CPU instructions Master 0 7

€200z0 core—CPU data / Nexus Master 1 6

Arbitration

XBAR supports only a fixed-priority comparison algorithm.

Fixed priority operation

When operating in fixed-priority arbitration mode, each master is assigned a unique priority
level in the XBAR_MPR. If two masters both request access to a slave port, the master with
the highest priority in the selected priority register gains control over the slave port.

Any time a master makes a request to a slave port, the slave port checks to see if the new
requesting master’s priority level is higher than that of the master that currently has control
over the slave port (if any). The slave port does an arbitration check at every clock edge to
ensure that the proper master (if any) has control of the slave port.

If the new requesting master’s priority level is higher than that of the master that currently has
control of the slave port, the higher priority master is granted control at the termination of any
currently pending access, assuming the pending transfer is not part of a burst transfer.

A new requesting master must wait until the end of the fixed-length burst transfer, before it is
granted control of the slave port. But if the new requesting master’s priority level is lower than
that of the master that currently has control of the slave port, the new requesting master is
forced to wait until the master that currently has control of the slave port is finished accessing
the current slave port.

Parking

If no master is currently requesting the slave port, the slave port is parked. The slave port
parks always to the last master (park-on-last). When parked on the last master, the slave port
is passing that master’s signals through to the slave bus. When the master accesses the
slave port again, no other arbitration penalties are incurred except that a one clock arbitration

DoclD14629 Rev 9 301/888

Crossbar Switch (XBAR) RM0017

penalty is incurred for each access request to the slave port made by another master port.
All other masters pay a one clock penalty.

3

302/888 DoclD14629 Rev 9

RM0017 Memory Protection Unit (MPU)

18 Memory Protection Unit (MPU)

18.1 Introduction

The Memory Protection Unit (MPU) provides hardware access control for all memory
references generated in the device. Using preprogrammed region descriptors which define
memory spaces and their associated access rights, the MPU concurrently monitors all
system bus transactions and evaluates the appropriateness of each transfer. Memory
references that have sufficient access control rights are allowed to complete, while
references that are not mapped to any region descriptor or have insufficient rights are
terminated with a protection error response.

The MPU module provides the following capabilities:
e Support for 8 program-visible 128-bit (4-word) region descriptors

— Each region descriptor defines a modulo-32 byte space, aligned anywhere in
memory
— Region sizes can vary from a minimum of 32 bytes to a maximum of 4 Gbytes
— Two types of access control permissions defined in single descriptor word
— Processors have separate {read, write, execute} attributes for supervisor and
user accesses
— Non-processor masters have {read, write} attributes
— Hardware-assisted maintenance of the descriptor valid bit minimizes coherency
issues
— Alternate programming model view of the access control permissions word

e Memory-mapped platform device
— Interface to 3 slave XBAR ports: flash controller, system SRAM controller and

peripherals bus
— Connections to the address phase address and attributes

— Typical location is immediately “downstream” of the platform’s crossbar
switch

A simplified block diagram of the MPU module is shown in Figure 130

3

DocID14629 Rev 9 303/888

Memory Protection Unit (MPU) RM0017

Platform

Core (z0hn2p)
A 4
s0
mo —) PFlash < >
—p
s2
ml XBAR MPU < > PRAM < >
———>
s7
<«———p PBRIDGEO |« >

Figure 130. MPU block diagram

18.2 Features

The Memory Protection Unit implements a two-dimensional hardware array of memory
region descriptors and the crossbar slave XBAR ports to continuously monitor the legality of
every memory reference generated by each bus master in the system. The feature set

includes:

304/888

Support for 8 memory region descriptors, each 128 bits in size

Specification of start and end addresses provide granularity for region sizes from
32 bytes to 4 GB

Access control definitions: 2 bus masters (processor cores) support the traditional
{read, write, execute} permissions with independent definitions for supervisor and
user mode accesses

Automatic hardware maintenance of the region descriptor valid bit removes issues
associated with maintaining a coherent image of the descriptor

Alternate memory view of the access control word for each descriptor provides an
efficient mechanism to dynamically alter only the access rights of a descriptor

For overlapping region descriptors, priority is given to permission granting over
access denying as this approach provides more flexibility to system software. See
Section 18.6.2: Putting it all together and AHB error terminations, for details and
Section 18.8: Application information, for an example.

3

DoclD14629 Rev 9

RMO0017

Memory Protection Unit (MPU)

18.3

18.4

18.5

3

e Support for 3 XBAR slave port connections: flash controller, system SRAM controller
and peripherals bus

— MPU hardware continuously monitors every XBAR slave port access using the
preprogrammed memory region descriptors

— An access protection error is detected if a memory reference does not hit in any
memory region or the reference is flagged as illegal in all memory regions where it
does hit. In the event of an access error, the XBAR reference is terminated with an
error response and the MPU inhibits the bus cycle being sent to the targeted slave
device.

— 64-bit error registers, one for each XBAR slave port, capture the last faulting
address, attributes and “detail” information

e Global MPU enable/disable control bit provides a mechanism to easily load region
descriptors during system startup or allow complete access rights during debug with
the module disabled

Modes of operation

The MPU module does not support any special modes of operation. As a memory-mapped
device located on the platform’s high-speed system bus, it responds based strictly on the
memory addresses of the connected system buses. The peripheral bus is used to access the
MPU'’s programming model and the memory protection functions are evaluated on a
reference-by-reference basis using the addresses from the XBAR system bus port(s).

Power dissipation is minimized when the MPU’s global enable/disable bit is cleared
(MPU_CESRI[VLD] = 0).

External signal description

The MPU module does not include any external interface. The MPU'’s internal interfaces
include a peripheral bus connection for accessing the programming model and multiple
connections to the address phase signals of the platform crossbar’s slave AHB ports. From
a platform topology viewpoint, the MPU module appears to be directly connected
“downstream” from the crossbar switch with interfaces to the XBAR slave ports.

Memory map and register description

The MPU module provides an IPS programming model mapped to an SPP-standard on-
platform 16 KB space. The programming model is partitioned into three groups: control/status
registers, the data structure containing the region descriptors and the alternate view of the
region descriptor access control values.

The programming model can only be referenced using 32-bit (word) accesses. Attempted
references using different access sizes, to undefined (reserved) addresses, or with a non-
supported access type (for example, a write to a read-only register or a read of a write-only
register) generate an IPS error termination.

Finally, the programming model allocates space for an MPU definition with 8 region
descriptors and up to 3 XBAR slave ports, like flash controller, system SRAM controller and
peripheral bus.

DoclD14629 Rev 9 305/888

Memory Protection Unit (MPU) RM0017
18.5.1 Memory map
The MPU programming model map is shown in Table 127.
Table 127. MPU memory map
Base address: OxFFF1_1000
Address offset Register Location

0x000 MPU Control/Error Status Register (MPU_CESR) on page 306

0x004-0x00F |Reserved
0x010 MPU Error Address Register, Slave Port 0 (MPU_EARO) on page 307
0x014 MPU Error Detail Register, Slave Port 0 (MPU_EDRO) on page 308
0x018 MPU Error Address Register, Slave Port 1 (MPU_EAR1) on page 307
0x01C MPU Error Detail Register, Slave Port 1 (MPU_EDR1) on page 308
0x020 MPU Error Address Register, Slave Port 2 (MPU_EAR?2) on page 307
0x024 MPU Error Detail Register, Slave Port 2 (MPU_EDR?2) on page 308

0x028-0x3FF |Reserved
0x400 MPU Region Descriptor 0 (MPU_RGDO) on page 309
0x410 MPU Region Descriptor 1 (MPU_RGD1) on page 309
0x420 MPU Region Descriptor 2 (MPU_RGD?2) on page 309
0x430 MPU Region Descriptor 3 (MPU_RGD3) on page 309
0x440 MPU Region Descriptor 4 (MPU_RGD4) on page 309
0x450 MPU Region Descriptor 5 (MPU_RGD5) on page 309
0x460 MPU Region Descriptor 6 (MPU_RGD®6) on page 309
0x470 MPU Region Descriptor 7 (MPU_RGD?7) on page 309

0x480-0x7FF |Reserved
0x800 MPU RGD Alternate Access Control 0 (MPU_RGDAACO) on page 315
0x804 MPU RGD Alternate Access Control 1 (MPU_RGDAAC1) on page 315
0x808 MPU RGD Alternate Access Control 2 (MPU_RGDAAC?2) on page 315
0x80C MPU RGD Alternate Access Control 3 (MPU_RGDAAC3) on page 315
0x810 MPU RGD Alternate Access Control 4 (MPU_RGDAAC4) on page 315
0x814 MPU RGD Alternate Access Control 5 (MPU_RGDAACS5) on page 315
0x818 MPU RGD Alternate Access Control 6 (MPU_RGDAACS) on page 315
0x81C MPU RGD Alternate Access Control 7 (MPU_RGDAACY7) on page 315

18.5.2 Register description

18.5.2.1 MPU Control/Error Status Register (MPU_CESR)

The MPU_CESR provides one byte of error status plus three bytes of configuration

information. A global MPU enable/disable bit is also included in this register.

306/888

DoclD14629 Rev 9

S74

RMO0017

Memory Protection Unit (MPU)

Offset: 0x000

Access: Read/Partial Write

0 1 2 3 ‘ 4 5 6 7 8 9 10 1 12 13 14 15
R SPERR[7:0] 1 0 0 0 HRL
W| wic ‘ wilc | wlc ‘ wlc | wic ‘ wlc ‘ wilc ‘ wlc ‘ ‘ ‘
Reset 0 0 0 0 0 0 0 0 1 0 0 0 * * * *
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R NSP NRGD 0 0 0 0 0 0 0
VLD
we [] [[]
Reset * * * * * * * * 0 0 0 0 0 0 0 0
Figure 131. MPU Control/Error Status Register (MPU_CESR)
Table 128. MPU_CESR field descriptions
Field Description
SPERRnN | Slave Port n Error, where the slave port number matches the bit number.
Each bit in this field represents a flag maintained by the MPU for signaling the presence of a captured
error contained in the MPU_EARnN and MPU_EDRn registers. The individual bit is set when the
hardware detects an error and records the faulting address and attributes. It is cleared when the
corresponding bit is written as a logical one. If another error is captured at the exact same cycle as a
write of a logical one, this flag remains set. A “find first one” instruction (or equivalent) can be used to
detect the presence of a captured error.
0 The corresponding MPU_EARN/MPU_EDRN registers do not contain a captured error.
1 The corresponding MPU_EARN/MPU_EDRN registers do contain a captured error.
HRL Hardware Revision Level
This field specifies the MPU'’s hardware and definition revision level. It can be read by software to
determine the functional definition of the module.
NSP Number of Slave Ports
This field specifies the number of slave ports [1-8] connected to the MPU.
NRGD Number of Region Descriptors
This field specifies the number of region descriptors implemented in the MPU. The defined encodings
include:
0b0000 8 region descriptors
0b0001 12 region descriptors
0b0010 16 region descriptors
VLD Valid
This bit provides a global enable/disable for the MPU.
0 The MPU is disabled.
1 The MPU is enabled.
While the MPU is disabled, all accesses from all bus masters are allowed.
18.5.2.2 MPU Error Address Register, Slave Port n (MPU_EARnN)

3

When the MPU detects an access error on slave port n, the 32-bit reference address is
captured in this read-only register and the corresponding bit in the MPU_CESR[SPERR] field
set. Additional information about the faulting access is captured in the corresponding
MPU_EDRNn register at the same time. Note this register and the corresponding MPU_EDRnN
register contain the most recent access error; there are no hardware interlocks with the

DoclD14629 Rev 9 307/888

Memory Protection Unit (MPU)

RMO0017

Offsets: 0x010—0x020 (3 registers)

MPU_CESR[SPERR] field as the error registers are always loaded upon the occurrence of
each protection violation.

Access: Read

7 ‘ 8 10 11 ‘ 12 13 14 15

0 1 2 9
R EADDR [31:16]
w | [] | [] |] |]
Reset - - - - - - - - - - - - - - - -
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R EADDR [15:0]
we | [] 1] [] [1]
Reset - - - - - - - - - - - - - - - -
Figure 132. MPU Error Address Register, Slave Port n (MPU_EARN)
Table 129. MPU_EARn field descriptions
Field Description
EADDR Error Address
This field is the reference address from slave port n that generated the access error.
18.5.2.3 MPU Error Detail Register, Slave Port n (MPU_EDRN)

Offsets: 0x014—0x024 (3 registers)

When the MPU detects an access error on slave port n, 32 bits of error detail are captured in
this read-only register and the corresponding bit in the MPU_CESR[SPERR] field set.
Information on the faulting address is captured in the corresponding MPU_EARN register at
the same time. Note that this register and the corresponding MPU_EARN register contain the
most recent access error; there are no hardware interlocks with the MPU_CESR[SPERR]
field as the error registers are always loaded upon the occurrence of each protection
violation.

Access: Read

7 ‘ 8 9 10 11 ‘ 12 13 14 15

0 1 2
R EACD
wl [[] [[] [[] [[]
Reset - - - - - - - - - — - - - - _ —
16 17 18 19 ‘ 20 21 22 23 24 25 26 27 28 29 30 31
R EPID EMN EATTR ERW
wl [[[[] [[] []
Reset - - - - - - - - - - - — - - — -
Figure 133. MPU Error Detail Register, Slave Port n (MPU_EDRN)

308/888

3

DoclD14629 Rev 9

RMO0017

Memory Protection Unit (MPU)

Table 130. MPU_EDRn field descriptions

Field Description

EACD Error Access Control Detail
This field implements one bit per region descriptor and is an indication of the region descriptor hit
logically ANDed with the access error indication. The MPU performs a reference-by-reference
evaluation to determine the presence/absence of an access error. When an error is detected, the hit-
qualified access control vector is captured in this field.
If the MPU_EDRN register contains a captured error and the EACD field is all zeroes, this signals an
access that did not hit in any region descriptor. All non-zero EACD values signal references that hit in
a region descriptor(s), but failed due to a protection error as defined by the specific set bits. If only a
single EACD bit is set, then the protection error was caused by a single non-overlapping region
descriptor. If two or more EACD bits are set, then the protection error was caused in an overlapping
set of region descriptors.

EPID Error Process Identification
This field records the process identifier of the faulting reference. The process identifier is typically
driven only by processor cores; for other bus masters, this field is cleared.

EMN Error Master Number
This field records the logical master number of the faulting reference. This field is used to determine
the bus master that generated the access error.

EATTR | Error Attributes

This field records attribute information about the faulting reference. The supported encodings are
defined as:
0b000 User mode, instruction access
0b001 User mode, data access
0b010Supervisor mode, instruction access
0b011Supervisor mode, data access
All other encodings are reserved. For non-core bus masters, the access attribute information is
typically wired to supervisor, data (0b011).

ERW Error Read/Write
This field signals the access type (read, write) of the faulting reference.
0 Read
1 Write

18.5.2.4 MPU Region Descriptor n (MPU_RGDn)
Each 128-bit (16 byte) region descriptor specifies a given memory space and the access
attributes associated with that space. The descriptor definition is the very essence of the
operation of the Memory Protection Unit.
The region descriptors are organized sequentially in the MPU’s programming model and
each of the four 32-bit words are detailed in the subsequent sections.
18.5.2.4.1 MPU Region Descriptor n, Word 0 (MPU_RGDn.Word0)

3

The first word of the MPU region descriptor defines the 0-modulo-32 byte start address of the
memory region. Writes to this word clear the region descriptor’s valid bit (see

Section 18.5.2.4.4: MPU Region Descriptor n, Word 3 (MPU_RGDn.Word3) for more
information).

DocID14629 Rev 9 309/888

Memory Protection Unit (MPU) RM0017

Offset: 0x400 + (16*n) + 0x0 (MPU_RGDn.Word0) Access: Read/write
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 1 ‘ 12 13 14 15
R SRTADDR[26:11]
w

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 28 29 30 31

R SRTADDR[10:0] ol o] o] o] o
W

Reset————\————\———ooooo

Figure 134. MPU Region Descriptor, Word 0 Register (MPU_RGDn.WordO0)

Table 131. MPU_RGDnN.WordO field descriptions

Field Description

SRTADDR Start Address

This field defines the most significant bits of the 0-modulo-32 byte start address of the memory
region.

18.5.2.4.2 MPU Region Descriptor n, Word 1 (MPU_RGDn.Word1)

The second word of the MPU region descriptor defines the 31-modulo-32 byte end address
of the memory region. Writes to this word clear the region descriptor’s valid bit (see
Section 18.5.2.4.4: MPU Region Descriptor n, Word 3 (MPU_RGDn.Word3) for more
information).

Offset: 0x400 + (16*n) + 0x4 (MPU_RGDn.Word1) Access: Read/write
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 1 ‘ 12 13 14 15
R
W ENDADDRJ[26:11]

Reset————‘——__‘____‘_

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 28 29 30 31

W
Reset————‘————‘———lllll
Figure 135. MPU Region Descriptor, Word 1 Register (MPU_RGDn.Word1)
Table 132. MPU_RGDn.Word1 field descriptions
Field Description

ENDADDR End Address

This field defines the most significant bits of the 31-modulo-32 byte end address of the memory
region. There are no hardware checks to verify that ENDADDR >= SRTADDR; it is software’s
responsibility to properly load these region descriptor fields.

310/888 DoclD14629 Rev 9 ‘Yl

RMO0017

Memory Protection Unit (MPU)

18.5.2.4.3 MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2)

The third word of the MPU region descriptor defines the access control rights of the memory
region. The access control privileges are dependent on two broad classifications of bus
masters. Bus masters 0-3 are typically reserved for processor cores and the corresponding
access control is a 6-bit field defining separate privilege rights for user and supervisor mode
accesses as well as the optional inclusion of a process identification field within the definition.
Bus masters 4-7 are typically reserved for data movement engines and their capabilities are
limited to separate read and write permissions. For these fields, the bus master number
refers to the logical master number defined as the XBAR hmaster[3:0] signal.

For the processor privilege rights, there are three flags associated with this function: {read,
write, execute}. In this context, these flags follow the traditional definition:

e Read (r) permission refers to the ability to access the referenced memory address
using an operand (data) fetch.

e Write (w) permission refers to the ability to update the referenced memory address
using a store (data) instruction.

e Execute (x) permission refers to the ability to read the referenced memory address
using an instruction fetch.

The evaluation logic defines the processor access type based on multiple AHB signals, as
hwrite and hprot[1:0].

For non-processor data movement engines (bus masters 4—7), the evaluation logic simply
uses hwrite to determine if the access is a read or write.

Writes to this word clear the region descriptor’s valid bit (see Section 18.5.2.4.4: MPU Region
Descriptor n, Word 3 (MPU_RGDn.Word3) for more information). Since it is also expected
that system software may adjust only the access controls within a region descriptor
(MPU_RGDn.Word2) as different tasks execute, an alternate programming view of this 32-
bit entity is provided. If only the access controls are being updated, this operation should be
performed by writing to MPU_RGDAACHN (Alternate Access Control n) as stores to these
locations do not affect the descriptor’s valid bit.

Offset: 0x400 + (16*n) + 0x8 (MPU_RGDn.Word2) Access: RIW
0 1 2 3 4 5 6 7 8 9 10 11 ‘ 12 13 14 15
R =
L L Ll L w L w L] L —
wElZ2|Z|2|Z (28|35 M3SM M3UM =
= = = = = = = = = = g
Reset — - - - - - - - - - - - ‘ - - - -
16 17 18 19 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R E L L
w| M2UM o M1SM M1UM oy MOSM MOUM
N =S =
>
Reset — - - - - - - - ‘ - - - - ‘ - - - -

3

Figure 136. MPU Region Descriptor, Word 2 Register (MPU_RGDn.Word2)

DoclD14629 Rev 9 311/888

Memory Protection Unit (MPU) RM0017

Table 133. MPU_RGDn.Word2 field descriptions

Field

Description

M7RE

Bus master 7 read enable

If set, this flag allows bus master 7 to perform read operations. If cleared, any attempted read by bus
master 7 terminates with an access error and the read is not performed.

M7WE

Bus master 7 write enable

If set, this flag allows bus master 7 to perform write operations. If cleared, any attempted write by bus
master 7 terminates with an access error and the write is not performed.

M6RE

Bus master 6 read enable

If set, this flag allows bus master 6 to perform read operations. If cleared, any attempted read by bus
master 6 terminates with an access error and the read is not performed.

M6WE

Bus master 6 write enable

If set, this flag allows bus master 6 to perform write operations. If cleared, any attempted write by bus
master 6 terminates with an access error and the write is not performed.

M5RE

Bus master 5 read enable

If set, this flag allows bus master 5 to perform read operations. If cleared, any attempted read by bus
master 5 terminates with an access error and the read is not performed.

M5WE

Bus master 5 write enable

If set, this flag allows bus master 5 to perform write operations. If cleared, any attempted write by bus
master 5 terminates with an access error and the write is not performed.

M4ARE

Bus master 4 read enable

If set, this flag allows bus master 4 to perform read operations. If cleared, any attempted read by bus
master 4 terminates with an access error and the read is not performed.

M4AWE

Bus master 4 write enable

If set, this flag allows bus master 4 to perform write operations. If cleared, any attempted write by bus
master 4 terminates with an access error and the write is not performed.

M3PE

Bus master 3 process identifier enable

If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M3SM

Bus master 3 supervisor mode access control

This field defines the access controls for bus master 3 when operating in supervisor mode. The
M3SM field is defined as:

0b00 r, w, X = read, write and execute allowed

0Ob01 r, —, x = read and execute allowed, but no write

0Ob10 r, w, — =read and write allowed, but no execute

Obl1l Same access controls as that defined by M3UM for user mode

M3UM

Bus master 3 user mode access control

This field defines the access controls for bus master 3 when operating in user mode. The M3UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be
terminated with an access error (if not allowed by any other descriptor) and the access not
performed.

M2PE

Bus master 2 process identifier enable

If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

312/888

DoclD14629 Rev 9 ‘Yl

RM0017 Memory Protection Unit (MPU)

Table 133. MPU_RGDnN.Word2 field descriptions(Continued)

Field Description

M2SM Bus master 2 supervisor mode access control

This field defines the access controls for bus master 2 when operating in supervisor mode. The
M2SM field is defined as:

0b00 r, w, x = read, write and execute allowed

0b01 r, —, x = read and execute allowed, but no write

0b10 r, w, — =read and write allowed, but no execute

Obl1l Same access controls as that defined by M2UM for user mode

M2UM Bus master 2 user mode access control

This field defines the access controls for bus master 2 when operating in user mode. The M2UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be
terminated with an access error (if not allowed by any other descriptor) and the access not
performed.

M1PE Bus master 1 process identifier enable

If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M1SM Bus master 1 supervisor mode access control

This field defines the access controls for bus master 1 when operating in supervisor mode. The
M1SM field is defined as:

0b00 r, w, X = read, write and execute allowed

0Ob01 r, —, x = read and execute allowed, but no write

0Ob10 r, w, — =read and write allowed, but no execute

Obl1ll Same access controls as that defined by M1UM for user mode

M1UM Bus master 1 user mode access control

This field defines the access controls for bus master 1 when operating in user mode. The M1UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be
terminated with an access error (if not allowed by any other descriptor) and the access not
performed.

MOPE Bus master O process identifier enable

If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

MOSM Bus master 0 supervisor mode access control

This field defines the access controls for bus master 0 when operating in supervisor mode. The
MOSM field is defined as:

0b00 r, w, X = read, write and execute allowed

0b01 r, —, x = read and execute allowed, but no write

0b10 r, w, — =read and write allowed, but no execute

Obl1l Same access controls as that defined by MOUM for user mode

MOUM Bus master 0 user mode access control

This field defines the access controls for bus master O when operating in user mode. The MOUM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be
terminated with an access error (if not allowed by any other descriptor) and the access not
performed.

3

DoclD14629 Rev 9 313/888

Memory Protection Unit (MPU) RM0017

18.5.2.4.4 MPU Region Descriptor n, Word 3 (MPU_RGDn.Word3)

The fourth word of the MPU region descriptor contains the optional process identifier and
mask, plus the region descriptor’s valid bit.

Since the region descriptor is a 128-bit entity, there are potential coherency issues as this
structure is being updated since multiple writes are required to update the entire descriptor.
Accordingly, the MPU hardware assists in the operation of the descriptor valid bit to prevent
incoherent region descriptors from generating spurious access errors. In particular, it is
expected that a complete update of a region descriptor is typically done with sequential writes
to MPU_RGDn.Word0, then MPU_RGDn.Word1,... and finally MPU_RGDn.Word3. The
MPU hardware automatically clears the valid bit on any writes to words {0,1,2} of the
descriptor. Writes to this word set/clear the valid bit in a normal manner.

Since it is also expected that system software may adjust only the access controls within a
region descriptor (MPU_RGDn.Word?2) as different tasks execute, an alternate programming
view of this 32-bit entity is provided. If only the access controls are being updated, this
operation should be performed by writing to MPU_RGDAACnN (Alternate Access Control n)
as stores to these locations do not affect the descriptor’s valid bit.

Offset: 0x400 + (16*n) + OxC (MPU_RGDn.Word3) Access: Read/write
0 1 2 3 ‘ 4 5 6 7 8 9 10 1 ‘ 12 13 14 15
R
PID PIDMASK
w
Reset - - - - ‘ - - - -

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VLD
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 137. MPU Region Descriptor, Word 3 Register (MPU_RGDn.Word3)
Table 134. MPU_RGDnN.Word3 field descriptions
Field Description
PID Process Identifier
This field specifies that the optional process identifier is to be included in the determination of
whether the current access hits in the region descriptor. This field is combined with the PIDMASK
and included in the region hit determination if MPU_RGDn.Word2[MxPE] is set.
PIDMASK | Process Identifier Mask
This field provides a masking capability so that multiple process identifiers can be included as part of
the region hit determination. If a bit in the PIDMASK is set, then the corresponding bit of the PID is
ignored in the comparison. This field is combined with the PID and included in the region hit
determination if MPU_RGDn.Word2[MxPE] is set. For more information on the handling of the PID
and PIDMASK, see Section 18.6.1.1: Access evaluation — Hit determination.
VLD Valid
This bit signals the region descriptor is valid. Any write to MPU_RGDn.Word{0,1,2} clears this bit,
while a write to MPU_RGDn.Word3 sets or clears this bit depending on bit 31 of the write operand.
0 Region descriptor is invalid
1 Region descriptor is valid
314/888 DocID14629 Rev 9 Kys

RM0017 Memory Protection Unit (MPU)
18.5.2.5 MPU Region Descriptor Alternate Access Control n (MPU_RGDAACN)
As noted in Section 18.5.2.4.3: MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2), it is
expected that since system software may adjust only the access controls within a region
descriptor (MPU_RGDn.Word?2) as different tasks execute, an alternate programming view
of this 32-bit entity is desired. If only the access controls are being updated, this operation
should be performed by writing to MPU_RGDAACN (Alternate Access Control n) as stores to
these locations do not affect the descriptor’s valid bit.
The memory address therefore provides an alternate location for updating
MPU_RGDn.Word2.
Offset: 0x800 + (4*n) (MPU_RGDAACN) Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 1 ‘ 12 13 14 15
R =
L w L w L w w L w w =
wE|Z|S[2 |85 |2|5|3 |8 | mesm mauM | & | 2
= b3 = b= = > = = = b= g
Reset - - - - - - - - - - - - ‘ - - - -
16 17 18 19 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
RI & L L
w| M2UM a M1SM M1UM s MOSM MOUM
l = =
=
Reset - - - - - - - - ‘ - - - - ‘ - - - -
Figure 138. MPU RGD Alternate Access Control n (MPU_RGDAACN)
Since the MPU_RGDAACN register is simply another memory mapping for
MPU_RGDn.Word2, the field definitions shown in Table 135 are identical to those presented
in Table 133.
Table 135. MPU_RGDAACN field descriptions
Field Description
M7RE Bus master 7 read enable.
If set, this flag allows bus master 7 to perform read operations. If cleared, any attempted read by bus
master 7 terminates with an access error and the read is not performed.
M7WE | Bus master 7 write enable
If set, this flag allows bus master 7 to perform write operations. If cleared, any attempted write by bus
master 7 terminates with an access error and the write is not performed.
M6RE | Bus master 6 read enable
If set, this flag allows bus master 6 to perform read operations. If cleared, any attempted read by bus
master 6 terminates with an access error and the read is not performed.
M6WE | Bus master 6 write enable
If set, this flag allows bus master 6 to perform write operations. If cleared, any attempted write by bus
master 6 terminates with an access error and the write is not performed.
M5RE | Bus master 5 read enable
If set, this flag allows bus master 5 to perform read operations. If cleared, any attempted read by bus
master 5 terminates with an access error and the read is not performed.

3

DoclD14629 Rev 9 315/888

Memory Protection Unit (MPU) RM0017

Table 135. MPU_RGDAACN field descriptions(Continued)

Field

Description

M5WE

Bus master 5 write enable

If set, this flag allows bus master 5 to perform write operations. If cleared, any attempted write by bus
master 5 terminates with an access error and the write is not performed.

M4RE

Bus master 4 read enable

If set, this flag allows bus master 4 to perform read operations. If cleared, any attempted read by bus
master 4 terminates with an access error and the read is not performed.

M4WE

Bus master 4 write enable

If set, this flag allows bus master 4 to perform write operations. If cleared, any attempted write by bus
master 4 terminates with an access error and the write is not performed.

M3PE

Bus master 3 process identifier enable

If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M3SM

Bus master 3 supervisor mode access control

This field defines the access controls for bus master 3 when operating in supervisor mode. The M3SM
field is defined as:

0b00 r, w, X = read, write and execute allowed

0b01 r, —, x = read and execute allowed, but no write

0b10 r, w, — =read and write allowed, but no execute

0bl1l Same access controls as that defined by M3UM for user mode

M3UM

Bus master 3 user mode access control

This field defines the access controls for bus master 3 when operating in user mode. The M3UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M2PE

Bus master 2 process identifier enable

If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M2SM

Bus master 2 supervisor mode access control

This field defines the access controls for bus master 2 when operating in supervisor mode. The M2SM
field is defined as:

0b00 1, w, x = read, write and execute allowed

0b01 r, —, x = read and execute allowed, but no write

0b10 r, w, — = read and write allowed, but no execute

0b1l Same access controls as that defined by M2UM for user mode

M2UM

Bus master 2 user mode access control

This field defines the access controls for bus master 2 when operating in user mode. The M2UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M1PE

Bus master 1 process identifier enable

If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

316/888

DoclD14629 Rev 9 ‘Yl

RM0017 Memory Protection Unit (MPU)
Table 135. MPU_RGDAACN field descriptions(Continued)
Field Description
M1SM Bus master 1 supervisor mode access control
This 2-bit field defines the access controls for bus master 1 when operating in supervisor mode. The
M1SM field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, —, x = read and execute allowed, but no write
0b10 r, w, — = read and write allowed, but no execute
0b1l Same access controls as that defined by M1UM for user mode
M1UM Bus master 1 user mode access control
This 3-bit field defines the access controls for bus master 1 when operating in user mode. The M1UM
field consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set,
the bit allows the given access type to occur; if cleared, an attempted access of that mode may be
terminated with an access error (if not allowed by any other descriptor) and the access not performed.
MOPE Bus master 0 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.
MOSM Bus master 0 supervisor mode access control
This field defines the access controls for bus master 0 when operating in supervisor mode. The MOSM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, —, x = read and execute allowed, but no write
0b10 r, w, — = read and write allowed, but no execute
0b1l Same access controls as that defined by MOUM for user mode
MOUM | Bus master O user mode access control
This field defines the access controls for bus master O when operating in user mode. The MOUM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.
18.6 Functional description
In this section, the functional operation of the MPU is detailed. In particular, subsequent
sections discuss the operation of the access evaluation macro as well as the handling of
error-terminated bus cycles.
18.6.1 Access evaluation macro

3

As previously discussed, the basic operation of the MPU is performed in the access
evaluation macro, a hardware structure replicated in the two-dimensional connection matrix.
As shown in Figure 139, the access evaluation macro inputs the system bus address phase
signals and the contents of a region descriptor (RGDn) and performs two major functions:
region hit determination (hit_b) and detection of an access protection violation (error).

DoclD14629 Rev 9 317/888

Memory Protection Unit (MPU) RM0017

18.6.1.1

18.6.1.2

318/888

System bus T —: RGDn
address phase | start '

|

| |

X

| i

| = |

| |

| |

| |

| hit_b |

| N N |

| - - |

I A |

hit & error i hit_b | error

Figure 139. MPU access evaluation macro

Figure 139 is not intended to be a schematic of the actual access evaluation macro, but
rather a generalized block diagram showing the major functions included in this logic block.

Access evaluation — Hit determination

To evaluate the region hit determination, the MPU uses two magnitude comparators in
conjunction with the contents of a region descriptor: the current access must be included
between the region's “start” and “end” addresses and simultaneously the region's valid bit
must be active.

Recall there are no hardware checks to verify that region's “end” address is greater then
region's “start” address, and it is software’s responsibility to properly load appropriate values
into these fields of the region descriptor.

In addition to this, the optional process identifier is examined against the region descriptor’s
PID and PIDMASK fields. In order to generate the pid_hit indication: the current PID with its
PIDMASK must be equal to the region's PID with its PIDMASK. Also the process identifier
enable is take into account in this comparison so that the MPU forces the pid_hit term to be
asserted in the case of AHB bus master doesn't provide its process identifier.

Access evaluation — Privilege violation determination

While the access evaluation macro is making the region hit determination, the logic is also
evaluating if the current access is allowed by the permissions defined in the region descriptor.
The protection violation logic then evaluates the access against the effective permissions
using the specification shown in Table 136.

Table 136. Protection violation definition

Inputs Output
Description
eff_rgd[r] eff_rgd[w] eff_rgd[x] Protection violation?
inst fetch read — — 0 yes, No X permission
inst fetch read — — 1 no, access is allowed

DoclD14629 Rev 9 ‘Yl

RMO0017

Memory Protection Unit (MPU)

18.6.2

18.7

3

Table 136. Protection violation definition(Continued)

Description

Inputs

Output

eff_rgd[r]

eff_rgd[w]

eff_rgd[x]

Protection violation?

data read

0

yes, no r permission

data read

1

no, access is allowed

data write

yes, ho w permission

data write

no, access is allowed

As shown in Figure 139, the output of the protection violation logic is the error signal.

The access evaluation macro then uses the hit_b and error signals to form two outputs. The
combined (hit_b | error) signal is used to signal the current access is not allowed and (~hit_b
& error) is used as the input to MPU_EDRN (error detail register) in the event of an error.

Putting it all together and AHB error terminations

For each XBAR slave port being monitored, the MPU performs a reduction-AND of all the
individual (hit_b | error) terms from each access evaluation macro. This expression then
terminates the bus cycle with an error and reports a protection error for three conditions:

1. Ifthe access does not hit in any region descriptor, a protection error is reported.

2. If the access hits in a single region descriptor and that region signals a protection
violation, then a protection error is reported.

3. If the access hits in multiple (overlapping) regions and all regions signal protection
violations, then a protection error is reported.

The third condition reflects that priority is given to permission granting over access denying
for overlapping regions as this approach provides more flexibility to system software in region
descriptor assignments. For an example of the use of overlapping region descriptors, see
Section 18.8: Application information.

In event of a protection error, the MPU requires two distinct actions:

1. Intercepting the error during the address phase (first cycle out of two) and cancelling
the transaction before it is seen by the slave device

2. Performing the required logic functions to force the standard 2-cycle AHB error
response to properly terminate the bus transaction and then providing the right values
to the crossbar switch to commit the transaction to other portions of the platform.

If, instead, the access is allowed, then the MPU simply passes all “original” signals to the
slave device. In this case, from a functionality point of view, the MPU is fully transparent.

Initialization information

The reset state of MPU_CESR[VLD] disables the entire module. Recall that, while the MPU
is disabled, all accesses from all bus masters are allowed. This state also minimizes the
power dissipation of the MPU. The power dissipation of each access evaluation macro is
minimized when the associated region descriptor is marked as invalid or when
MPU_CESRI[VLD] = 0.

DoclD14629 Rev 9 319/888

Memory Protection Unit (MPU) RM0017

Typically the appropriate number of region descriptors (MPU_RGDn) is loaded at system
startup, including the setting of the MPU_RGDn.Word3[VLD] bits, before MPU_CESR[VLD]
is set, enabling the module. This approach allows all the loaded region descriptors to be
enabled simultaneously. Recall if a memory reference does not hit in any region descriptor,
the attempted access is terminated with an error.

18.8 Application information

In an operational system, interfacing with the MPU can generally be classified into the
following activities:

1. Creation of a new memory region requires loading the appropriate region descriptor
into an available register location. When a new descriptor is loaded into a RGDn, it
would typically be performed using four 32-bit word writes. As discussed in
Section 18.5.2.4.4: MPU Region Descriptor n, Word 3 (MPU_RGDn.Word3), the
hardware assists in the maintenance of the valid bit, so if this approach is followed,
there are no coherency issues associated with the multi-cycle descriptor writes.
Deletion/removal of an existing memory region is performed simply by clearing
MPU_RGDn.Word3[VLD].

2. If only the access rights for an existing region descriptor need to change, a 32-bit write
to the alternate version of the access control word (MPU_RGDAACN) would typically
be performed. Recall writes to the region descriptor using this alternate access control
location do not affect the valid bit, so there are, by definition, no coherency issues
involved with the update. The access rights associated with the memory region switch
instantaneously to the new value as the IPS write completes.

3. Ifthe region’s start and end addresses are to be changed, this would typically be
performed by writing a minimum of three words of the region descriptor:
MPU_RGDn.Word{0,1,3}, where the writes to Word0 and Word1 redefine the start and
end addresses respectively and the write to Word3 re-enables the region descriptor
valid bit. In many situations, all four words of the region descriptor would be rewritten.

4. Typically, references to the MPU’s programming model would be restricted to
supervisor mode accesses from a specific processor(s), so a region descriptor would
be specifically allocated for this purpose with attempted accesses from other masters
or while in user mode terminated with an error.

When the MPU detects an access error, the current bus cycle is terminated with an error
response and information on the faulting reference captured in the MPU_EARN and
MPU_EDRN registers. The error-terminated bus cycle typically initiates some type of error
response in the originating bus master. For example, the CPU errors will generate a core
exception, whereas the DMA errors will generate a MPU (external) interrupt. It is important
to highlight that in case of DMA access violations the core will continue to run, but if a core
violation occurs the system will stop. In any event, the processor can retrieve the captured
error address and detail information simply be reading the MPU_E{A,D}Rn registers.
Information on which error registers contain captured fault data is signaled by
MPU_CESR[SPERR].

3

320/888 DoclD14629 Rev 9

RM0017 System Integration Unit Lite (SIUL)

19 System Integration Unit Lite (SIUL)

19.1 Introduction
This chapter describes the System Integration Unit Lite (SIUL), which is used for the
management of the pads and their configuration. It controls the multiplexing of the alternate
functions used on all pads as well as being responsible for the management of the external
interrupts to the device.

19.2 Overview

3

The System Integration Unit Lite (SIUL) controls the MCU pad configuration, ports, general-
purpose input and output (GPIO) signals and external interrupts with trigger event
configuration. Figure 140 provides a block diagram of the SIUL and its interfaces to other
system components.

The module provides the capability to configure, read, and write to the device’s general-

purpose I/O pads that can be configured as either inputs or outputs.

e When a pad is configured as an input, the state of the pad (logic high or low) is
obtained by reading an associated data input register.

e When a pad is configured as an output, the value driven onto the pad is determined by
writing to an associated data output register. Enabling the input buffers when a pad is
configured as an output allows the actual state of the pad to be read.

e To enable monitoring of an output pad value, the pad can be configured as both output
and input so the actual pad value can be read back and compared with the expected
value.

DoclD14629 Rev 9 321/888

System Integration Unit Lite (SIUL)

RMO0017

SIUL Module

Pad Configuration (IOMUXC)

>

Pad Config (PCRs)

1230

IPS
Master

GPIO Functionality

>

1231

Data

1231

MUX

Pad Input

Notes:

Interrupt Functionality

—>

16

1230

Pads

Interrupt <

- Configuration

Interrupt
Controller

- Glitch Filter

IPS
BUS

1 Upto 123 I/O pins in 144-pin and 208-pin packages; up to 79 I/O pins in 100-pin packages
2 Up to 16 I/O pins in 144-pin and 208-pin packages; up to 12 1/O pins in 100-pin packages

322/888

Figure 140. System Integration Unit Lite block diagram

DoclD14629 Rev 9

3

RM0017 System Integration Unit Lite (SIUL)

19.3 Features

The System Integration Unit Lite supports these distinctive features:
e GPIO

— GPIO function on up to 123 I/O pins

— Dedicated input and output registers for most GPIO pins(”)
e External interrupts

— 2 system interrupt vectors for up to 16 interrupt sources

— 16 programmable digital glitch filters

— Independent interrupt mask

— Edge detection
e System configuration

— Pad configuration control

19.4 External signal description

Most device pads support multiple device functions. Pad configuration registers are provided
to enable selection between GPIO and other signals. These other signals, also referred to as
alternate functions, are typically peripheral functions.

GPIO pads are grouped in “ports”, with each port containing up to 16 pads. With appropriate
configuration, all pins in a port can be read or written to in parallel with a single R/W access.

Note: In order to use GPIO port functionality, all pads in the port must be configured as GPIO
rather than as alternate functions.

Table 137 lists the external pins configurable via the SIUL.

Table 137. SIUL signal properties

GPI0[0:122]®D 110 .
Name . . Function
category direction

GPIO [0:19] [26:47] [60:122] | Input/Output | General-purpose input/output

System configuration i i
GPIO [20:25] [48:59] Input S\irr\]zlog precise channels, low power oscillator
Input Pins with External Interrupt Request

functionality. Please see the signal
description chapter of this reference manual
for details.

External interrupt EIRQ[0:15]®

1. GPIO[0:122] in 144-pin LQFP and LBGA208; GPIO[0:78] in 100-pin LQFP
2. EIRQ[12:15] available only in 144-pin LQFP

n. Some device pins, e.g., analog pins, do not have both input and output functionality.

3

DocID14629 Rev 9 323/888

System Integration Unit Lite (SIUL)

RMO0017

19.4.1 Detailed signal descriptions

19.4.1.1 General-purpose I/O pins (GPIO[0:122])

The GPIO pins provide general-purpose input and output function. The GPIO pins are
generally multiplexed with other I/O pin functions. Each GPIO input and output is separately
controlled by an input (GPDIn_n) or output (GPDON_n) register.

19.4.1.2 External interrupt request input pins (EIRQ[0:15])(©)

The EIRQ[0:15] pins are connected to the SIUL inputs. Rising- or falling-edge events are
enabled by setting the corresponding bits in the SIUL_IREER or the SIUL_IFEER register.

19.5 Memory map and register description

This section provides a detailed description of all registers accessible in the SIUL module.

19.5.1 SIUL memory map

Table 138 gives an overview of the SIUL registers implemented.

Table 138. SIUL memory map

Base address: 0xC3F9_0000

0x0500-0x051C

PSMI28_31)

Address offset Register Location

0x0000 Reserved
0x0004 MCU ID Register #1 (MIDR1) on page 326
0x0008 MCU ID Register #2 (MIDR2) on page 327
0x000C-0x0013 Reserved
0x0014 Interrupt Status Flag Register (ISR) on page 328
0x0018 Interrupt Request Enable Register (IRER) on page 329
0x001C-0x0027 Reserved
0x0028 Interrupt Rising-Edge Event Enable Register (IREER) on page 329
0x002C Interrupt Falling-Edge Event Enable Register (IFEER) on page 330
0x0030 Interrupt Filter Enable Register (IFER) on page 331
0x0034—-0x003F Reserved
0x0040-0x0134 Pad Configuration Registers (PCRO—PCR122)(1) on page 331
0x0136—0x04FF Reserved

Pad Selection for Multiplexed Inputs Registers (PSMIO_3— on page 334

0. EIRQ[0:15] in 144-pin LQFP and LBGA208 packages; EIRQ[0:11] in the 100-pin LQFP

324/888

DoclD14629 Rev 9

3

RMO0017

System Integration Unit Lite (SIUL)

Table 138. SIUL memory map(Continued)

Base address: 0xC3F9_0000

Address offset Register Location
0x0520-0x05FF Reserved
OX0600—0X0678 ggg)oiz;g_[)laétg)gfégut Registers (GPDOO0_3- on page 337
0x067C—-0x07FF Reserved
0x0800-0x0878 GPIO Pad Data Input Registers (GPDIO_3-GPDI120_123)@-*)| on page 337
0x087C—-0x0BFF Reserved
0x0C00-0x0C0C Parallel GPIO Pad Data Out Registers (PGPDOO — PGPDO3) on page 338
0x0C10-0x0C3F Reserved
0x0C40-0x0C4C Parallel GPIO Pad Data In Registers (PGPDIO — PGPDI3) on page 339
0x0C50-0x0C7F Reserved
OXOC80-0X0CIC miﬁsggigallel GPIO Pad Data Out Register (MPGPDOO— on page 340
0XOCAO—-OxOFFF Reserved
Ox1000—0x103C :Et'\(jlrcl;i%t)(lgglter Maximum Counter Registers (IFMCO- on page 341
0x1040-0x107C Reserved
0x1080 Interrupt Filter Clock Prescaler Register (IFCPR) on page 342

0x1084—0x3FFF

Reserved

1. PCR[0:122] is valid in the 144-pin LQFP and the LBGA208 packages, while in the 100-pin LQFP packages is PCR[0:78],
so all the remaining registers are reserved.

2. Not all registers are used. The registers, although byte-accessible are allocated on 32-bit boundaries. There are some
unused registers at the end of the space. The number of unused registers is further reduced in packages with reduced

GPIO pin count.

3. GPDO[0:123] is valid in the 144-pin LQFP and the LBGA208 packages, while in the 100-pin LQFP packages is
GPDOQJ[0:76], so all the remaining registers are reserved.

4. GPDI[0:123] is valid in the 144-pin LQFP and the LBGA208 packages, while in the 100-pin LQFP packages is GPDI[0:76],
so all the remaining registers are reserved.

5. IFMCJ[0:15] is valid in the 144-pin LQFP and the LBGA208 packages, while in the 100-pin LQFP packages is IFMC[0:11],
so all the remaining registers are reserved.

Note: A transfer error will be issued when trying to access completely reserved register space.

3

DoclD14629 Rev 9

325/888

System Integration Unit Lite (SIUL) RM0017

19.5.2 Register protection

Individual registers in System Integration Unit Lite can be protected from accidental writes
using the Register Protection module. The following registers can be protected:

e Interrupt Request Enable Register (IRER)

e Interrupt Rising-Edge Event Enable Register (IREER)
e Interrupt Falling-Edge Event Enable Register (IFEER)
e Interrupt Filter Enable Register (IFER),

e Pad Configuration Registers (PCRO—PCR122). Note that only the following registers
can be protected:

— PCRI0:15] (Port A)
— PCR[16:19] (Port B[0:3])
— PCR[34:47] (Port C[2:15])
e Pad Selection for Multiplexed Inputs Registers (PSMIO_3—-PSMI28_31)

e Interrupt Filter Maximum Counter Registers (IFMCO-IFMC15). Note that only
IFMC[0:15] can be protected.

e Interrupt Filter Clock Prescaler Register (IFCPR)
See the “Register Under Protection” appendix for more details.

19.5.3 Register descriptions

19.5.3.1 MCU ID Register #1 (MIDR1)

This register holds identification information about the device.

Offset: 0x0004 Access: Read
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 1 ‘ 12 13 14 15
R PARTNUM[15:0]
w [[] [[[

Reset 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0

16 17 18 19 ‘ 20 21 22 23 24 25 26 27 28 29 30 31
R| CSP PKG 0 0 MAJOR_MASK MINOR_MASK

we | [[|] N N O

Reset 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
Figure 141. MCU ID Register #1 (MIDR1)

3

326/888 DoclD14629 Rev 9

RMO0017 System Integration Unit Lite (SIUL)
Table 139. MIDRL1 field descriptions
Field Description
PARTNUM[15:0] MCU Part Number, lower 16 bits
Device part number of the MCU.
0101_0110_0000_0001:128 KB
0101_0110_0000_0010: 256 KB
0101_0110_0000_0011: 320/384 KB
0101_0110_0000_0100: 512 KB
For the full part number this field needs to be combined with MIDR2[PARTNUM[23:16]].
CSP Always reads back 0
PKG Package Settings
Can be read by software to determine the package type that is used for the particular
device as described below. Any values not explicitly specified are reserved.
0b00001: 64-pin LQFP
0b01001: 100-pin LQFP
0b01101: 144-pin LQFP
MAJOR_MASK Major Mask Revision
Counter starting at 0x0. Incremented each time there is a resynthesis.
MINOR_MASK Minor Mask Revision
Counter starting at 0x0. Incremented each time a mask change is done.
19.5.3.2 MCU ID Register #2 (MIDR2)
Offset: 0x0008 Access: Read
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 1 12 13 14 15
R| SF FLASH_SIZE_1 FLASH_SIZE_2 0 0 0 0 0 0 0
w]]
Reset 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 ‘ 20 21 22 23 24 25 26 27 28 29 30 31
R PARTNUM[23:16] 0 0 0 EE 0 0 0 0
w1 |]
Reset 0 1 0 0 0 0 1 o1/ o 0 0 1 | o® o® o g
Figure 142. MCU ID Register #2 (MIDR2)
1. Static bit fixed in hardware
1S7 DoclD14629 Rev 9 327/888

System Integration Unit Lite (SIUL) RM0017

Table 140. MIDR?2 field descriptions

Field Description
SF Manufacturer
0 Reserved
1 ST

FLASH_SIZE_1 | Coarse granularity for Flash memory size

Total flash memory size = FLASH_SIZE_1 + FLASH_SIZE_2
0011 128 KB

0100 256 KB

0101 512 KB

FLASH_SIZE_2 | Fine granularity for Flash memory size
Total flash memory size = FLASH_SIZE_1 + FLASH_SIZE 2
0000 0 x (FLASH_SIZE_1/8)

0010 2 x (FLASH_SIZE_1/8)
0100 4 x (FLASH_SIZE_1/8)

PARTNUM MCU Part Number, upper 8 bits containing the ASCII character within the MCU part number
[23:16] 0x42h: Character ‘B’ (Body controller)
0x43h: Character ‘C’ (Gateway)

For the full part number this field needs to be combined with MIDR1[PARTNUM[15:0]].

EE Data Flash present

0 No Data Flash is present
1 Data Flash is present

19.5.3.3 Interrupt Status Flag Register (ISR)
This register holds the interrupt flags.

Offset: 0x0014 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R EIF[15:0]D

W wilc
Reset 0 0 0 0 \ 0 0 0 0 \ 0 0 0 0 \ 0 0 0 0

Figure 143. Interrupt Status Flag Register (ISR)
1. EIF[15:0] in 144-pin LQFP and the LBGA208 packages; EIF[11:0] in 100-pin LQFP package.

3

328/888 DoclD14629 Rev 9

RM0017 System Integration Unit Lite (SIUL)

Table 141. ISR field descriptions

Field Description

EIF[x] External Interrupt Status Flag x
This flag can be cleared only by writing a ‘1’. Writing a ‘0’ has no effect. If enabled (IRER[X]),
EIF[x] causes an interrupt request.

0 No interrupt event has occurred on the pad
1 An interrupt event as defined by IREER[X] and IFEER[X] has occurred

19.5.3.4 Interrupt Request Enable Register (IRER)

This register is used to enable the interrupt messaging to the interrupt controller.

Offset: 0x0018 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31

IRE[15:0]D)

Resetoooo\oooo\oooo\oooo

Figure 144. Interrupt Request Enable Register (IRER)
1. IRE[15:0] in 144-pin LQFP and the LBGA208 packages; IRE[11:0] in 100-pin LQFP package.

Table 142. IRER field descriptions

Field Description

IRE[X] External Interrupt Request Enable x

0 Interrupt requests from the corresponding ISR[EIF[x]] bit are disabled.
1 Interrupt requests from the corresponding ISR[EIF[X]] bit are enabled.

19.5.3.5 Interrupt Rising-Edge Event Enable Register (IREER)

This register is used to enable rising-edge triggered events on the corresponding interrupt
pads.

3

DocID14629 Rev 9 329/888

System Integration Unit Lite (SIUL) RM0017

Offset:0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31

R
IREE[15:0]D)
W

Resetoooo\oooo\oooo\oooo

Figure 145. Interrupt Rising-Edge Event Enable Register (IREER)
1. IREE[15:0]in 144-pin LQFP and LBGA208 packages; IREE[11:0] in 100-pin LQFP package.

Table 143. IREER field descriptions

Field Description

IREE[X] Enable rising-edge events to cause the ISR[EIF[x]] bit to be set.

0 Rising-edge event is disabled
1 Rising-edge event is enabled

19.5.3.6 Interrupt Falling-Edge Event Enable Register (IFEER)

This register is used to enable falling-edge triggered events on the corresponding interrupt
pads.

Offset:0x002C Access: User read/write

0 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.
N
w
H
o
o
~
o
©

Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31

IFEE[15:0]D)

ResetOOOO‘OOOO‘OOOO‘OOOO

Figure 146. Interrupt Falling-Edge Event Enable Register (IFEER)
1. IFEE[15:0] in 144-pin LQFP and LBGA208 packages; IFEE[11:0] in 100-pin LQFP package.

Table 144. IFEER field descriptions

Field Description

IFEE[X] Enable falling-edge events to cause the ISR[EIF[X]] bit to be set.

0 Falling-edge event is disabled
1 Falling-edge event is enabled

3

330/888 DoclD14629 Rev 9

RM0017 System Integration Unit Lite (SIUL)
Note: If both the IREER[IREE] and IFEERJ[IFEE] bits are cleared for the same interrupt source, the
interrupt status flag for the corresponding external interrupt will never be set. If

IREER[IREE] and IFEER[IFEE] bits are set for the same source the interrupts are triggered
by both rising edge events and falling edge events.
19.5.3.7 Interrupt Filter Enable Register (IFER)
This register is used to enable a digital filter counter on the corresponding interrupt pads to
filter out glitches on the inputs.
Offset:0x0030 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R O 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R
IFE[15:0]D
w
Reset 0 0 ©0 o]0 o0 o0 O[O0 0 0 O/ 0 0O 0 O

Figure 147. Interrupt Filter Enable Register (IFER)

1. IFE[15:0] in 144-pin LQFP and LBGA208 packages; IFE[11:0] in 100-pin LQFP package.

Table 145. IFER field descriptions

Field Description
IFE[X] Enable digital glitch filter on the interrupt pad input
0 Filter is disabled
1 Filter is enabled
See the IFMC field descriptions in Table 156 for details on how the filter works.
19.5.3.8 Pad Configuration Registers (PCR0-PCR122)

3

The Pad Configuration Registers allow configuration of the static electrical and functional
characteristics associated with I/O pads. Each PCR controls the characteristics of a single
pad.
Please note that input and output peripheral muxing are separate.
e For output pads:
— Select the appropriate alternate function in Pad Config Register (PCR)
— OBE is not required for functions other than GPIO
e For INPUT pads:
— Select the feature location from PSMI register
— Set the IBE bit in the appropriate PCR
e For normal GPIO (not alternate function):
— Configure PCR
— Read from GPDI or write to GPDO

DoclD14629 Rev 9 331/888

System Integration Unit Lite (SIUL)

RMO0017

Offsets: Base + 0x0040 (PCRO0)(123 registers)
Base + 0x0042 (PCR1)

Base + 0x0130 (PCR122)

Access: User read/write

0 1 2 3 4 5 7 8 9 10 11 12 13 14 15

R| 0 0 0 0
W SMC | APC PA[1:0] |OBE| IBE ODE SRC | WPE | WPS
Reset 0 0B 0 o ' o® o 0@ o® | o 0 0 0 0 o o0o® 14

1
2
3. IBE and WPE are ‘1’ for TCK, TMS, TDI, FAB and ABS
4

Figure 148. Pad Configuration Registers (PCRx)

SMC and PA[1] are ‘1’ for JTAG pads
OBE is ‘1’ for TDO

. WPS is ‘0’ for input only pad with analog feature and FAB

Note: 16/32-bit access is supported.
In addition to the bit map above, the following Table 147 describes the PCR depending on
the pad type (pad types are defined in the “Pad types” section of this reference manual). The
bits in shaded fields are not implemented for the particular I/O type. The PA field selecting
the number of alternate functions may or may not be present depending on the number of
alternate functions actually mapped on the pad.
Table 146. PCR bit implementation by pad type
PCR bit No.
Pad type
0 1 2 3 4 5 6 7 8 10 11 12 13 14 15
S, M, F (Pad SMC | APC PA[1:0] |OBE| IBE ODE SRC |WPE|WPS
with GPIO
and digital
alternate
function)
J (Pad with SMC | APC PA[1:0] |OBE| IBE ODE SRC |WPE|WPS
GPIO and
analog
functionality)
| (Pad SMC | APC PA[1:0] |OBE| IBE ODE SRC |WPE |WPS
dedicated to
ADC)
332/888 DoclD14629 Rev 9 Kys

RMO0017

System Integration Unit Lite (SIUL)

Table 147. PCRx field descriptions

Field

Description

SMC

Safe Mode Control.
This bit supports the overriding of the automatic deactivation of the output buffer of the
associated pad upon entering SAFE mode of the device.

0 In SAFE mode, the output buffer of the pad is disabled.
1 In SAFE mode, the output buffer remains functional.

APC

Analog Pad Control.

This bit enables the usage of the pad as analog input.
OAnalog input path from the pad is gated and cannot be used
1Analog input path switch can be enabled by the ADC

PA[1:0]

Pad Output Assignment

This field is used to select the function that is allowed to drive the output of a multiplexed pad.
00 Alternative Mode 0 — GPIO

01 Alternative Mode 1 — See the signal description chapter

10 Alternative Mode 2 — See the signal description chapter

11 Alternative Mode 3 — See the signal description chapter

Note: Number of bits depends on the actual number of actual alternate functions. Please see
datasheet.

OBE

Output Buffer Enable
This bit enables the output buffer of the pad in case the pad is in GPIO mode.

0 Output buffer of the pad is disabled when PA[1:0] = 00
1 Output buffer of the pad is enabled when PA[1:0] = 00

IBE

Input Buffer Enable
This bit enables the input buffer of the pad.

0 Input buffer of the pad is disabled
1 Input buffer of the pad is enabled

ODE

Open Drain Output Enable

This bit controls output driver configuration for the pads connected to this signal. Either open
drain or push/pull driver configurations can be selected. This feature applies to output pads only.
0 Pad configured for push/pull output

1 Pad configured for open drain

SRC

Slew Rate Control

This field controls the slew rate of the associated pad when it is slew rate selectable. Its usage is
the following:

0 Pad configured as slow (default)

1 Pad is configured as medium or fast (depending on the pad)

Note: PC[1] (TDO pad) is medium only. By default SRC = 0, and writing ‘1’ has no effect.

3

DocID14629 Rev 9 333/888

System Integration Unit Lite (SIUL)

RMO0017

Table 147. PCRXx field descriptions(Continued)

Field Description

WPE Weak Pull Up/Down Enable
This bit controls whether the weak pull up/down devices are enabled/disabled for the pad
connected to this signal.
0 Weak pull device disabled for the pad
1 Weak pull device enabled for the pad

WPS Weak Pull Up/Down Select
This bit controls whether weak pull up or weak pull down devices are used for the pads
connected to this signal when weak pull up/down devices are enabled.
0 Weak pull-down selected
1 Weak pull-up selected

19.5.3.9 Pad Selection for Multiplexed Inputs Registers (PSMIO_3-PSMI28_31)

In some cases, a peripheral input signal can be selected from more than one pin. For
example, the CAN1_RXD signal can be selected on three different pins: PC[3], PC[11] and
PF[15]. Only one can be active at a time. To select the pad to be used as input to the
peripheral:

Select the signal via the pad’s PCR register using the PA field.
Specify the pad to be used via the appropriate PSMI field.

Offsets:0x0500—-0x051C (8 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0
PADSELO PADSEL1
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0
PADSEL2 PADSEL3
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 149. Pad Selection for Multiplexed Inputs Register (PSMI0_3)
Table 148. PSMIO_3 field descriptions
Field Description
PADSELO-3,
PADSEL4-7, |Pad Selection Bits
Each PADSEL field selects the pad currently used for a certain input function. See Table 149.
PADSEL28-31

In order to multiplex different pads to the same peripheral input, the SIUL provides a register
that controls the selection between the different sources.

3

334/888 DoclD14629 Rev 9

RMO0017

System Integration Unit Lite (SIUL)

Table 149. Peripheral input pin selection

PSMI registers

PADSEL fields

SIUL address offset

Function / Peripheral

Mapping®

PSMIO_3

PADSELO

0x500

CANI1RX/ FlexCAN_1

00:
01:
10:

PCR[35]
PCR[43]
PCR[95]®

PADSEL1®

0x501

CAN2RX / FlexCAN_2

00:
01:

PCR[73]
PCR[89]®

PADSEL2

0x502

CAN3RX / FlexCAN_3

00:
01:
10:

PCR[36]
PCR[73]
PCR[89]®

PADSEL3®

0x503

CAN4RX / FlexCAN_4

00:
01:
10:

PCR[35]
PCR[43]
PCR[95]®

PSMI4_7

PADSEL4®¥

0x504

CANS5RX / FlexCAN_5

00:
01:

PCR[64]
PCR[97]®

PADSEL5

0x505

SCK_0/DSPI_0

00:
01:

PCR[14]
PCR[15]

PADSELG6

0x506

CS0_0/DSPI_0

00:
01:
10:

PCR[14]
PCR[15]
PCR[27]

PADSEL7

0x507

SCK_1/DSPI_1

00:
01:
10:

PCR[34]
PCR[68]
PCR[114]®

PSMI8_11

PADSELS8

0x508

SIN_1/DSPI_1

00:
01:
10:

PCR[36]
PCR[66]
PCR[112]@

PADSEL9

0x509

CS0_1/DSPI_1

00:
01:
10:
11:

PCR[435]
PCR[61]
PCR[69]
PCR[115]®@

PADSEL10

O0x50A

SCK_2/DSPI_2

00:
01:
10:

PCR[46]
PCR[78]@
PCR[105]®@

PADSEL11

0x50B

SIN_2/DSPI_2

00:
01:

PCR[44]
PCR[76]

PSMI12_15

PADSEL12

0x50C

CS0_2/DSPI_2

00:
01:
10:
11:

PCR[47]
PCR[79]®@
PCR[82]®
PCR[104]®@

PADSEL13

0x50D

E1UCI[3] / eMIOS_0

00:
01:

PCR[3]
PCR[27]

PADSEL14

O0x50E

EOUC[4] / eMIOS_0

00:
01:

PCR[4]
PCR[28]

PADSEL15

O0x50F

EOUCI5] / eMIOS_0

00:
01:

PCR[5]
PCR[29]

3

DoclD14629 Rev 9

335/888

System Integration Unit Lite (SIUL) RM0017

Table 149. Peripheral input pin selection(Continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping(l)
00: PCR[6]
PADSEL16 0x510 EOQUC[6] / eMIOS_0
X [6] — 01: PCR[30]
00: PCR[7
PADSEL17 0x511 EOQUC[7] / eMIOS_0 [7]
01: PCR[31]
PSMI16_19 (10]
00: PCR[10
PADSEL18 0x512 EOUC[10] / eMIOS_0
X [10] — 01: PCR[80]®
00: PCR[11]
PADSEL19 0x513 EOUC[11] / eMIOS_0
X [11] — 01: PCR[81]®
00: PCR[44]
PADSEL?20 0x514 EOUC[12] / eMIOS_0
X [12] — 01: PCR[82]®
00: PCR[45]
PADSEL21 0x515 EOUC[13] / eMIOS_0
X [13] — 01: PCR[83]®
PSMI20 23
— 00: PCR[46]
PADSEL22 0x516 EOUC[14] / eMIOS_0
X [14] — 01: PCR[84]®
00: PCR[70]
PADSEL23 0x517 EOQUC[22] / eMIOS_0 01: PCR[72]
10: PCR[85]®@
00: PCR[71]
PADSEL24 0x518 EOUC[23] / eMIOS_0 01: PCR[73]
10: PCR[86]@
00: PCR[60
PADSEL25() 0x519 EOUC[24] / eMIOS_0 . [60] @
PSMI24_27 01: PCR[106]
00: PCR[61]
PADSEL26() OX51A EOUC[25] / eMIOS_0
X [25] — 01: PCR[107]®
00: PCR[62]
PADSEL27®) 0x51B EOUC[26] / eMIOS_0
X [26] — 01: PCR[108]®
00: PCR[63]
PADSEL28®) 0x51C EOUC[27] / eMIOS_0
X [27] — 01: PCR[109]®
00: PCR[11
PADSEL?29 0x51D SCL/f 0 [L1]
01: PCR[19]
PSMI28_31
PADSEL30 Ox51E SDA/I12C_0 00: PCRI10]
01: PCR[18]
00: PCR[8
PADSEL31 Ox51F LIN3RX / LINFlex_3 (8]
01: PCR[75]
1. See the signal description chapter of this reference manual for correspondence between PCR and pinout
2. Not available in 100-pin LQFP
3. Not available on SPC560B44L3 and SPC560B44L5 devices
4. Available only on SPC560B50B2 devices
5. Not available on SPC560B40L3 and SPC560B44L3 devices

3

336/888 DoclD14629 Rev 9

RM0017 System Integration Unit Lite (SIUL)

19.5.3.10 GPIO Pad Data Output Registers (GPDO0_3-GPDO120_123)

These registers are used to set or clear GPIO pads. Each pad data out bit can be controlled
separately with a byte access.

Offsets: 0x0600—0x0678 (31 registers) Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 <) 0 0 0 0 0 =
w 3 8
o a
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 24 25 26 27 28 29 30

o |PDO[3]|

o |PDO[2]|X

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 150. Port GPIO Pad Data Output Register 0-3 (GPDOOQ_3)

Table 150. GPDOO_3 field descriptions

Field Description

PDOI[X] Pad Data Out
This bit stores the data to be driven out on the external GPIO pad controlled by this register.
0 Logic low value is driven on the corresponding GPIO pad when the pad is configured as an

output
1 Logic high value is driven on the corresponding GPIO pad when the pad is configured as an

output

Caution: Toggling several I0s at the same time can significantly increase the current in a pad group.
Caution must be taken to avoid exceeding maximum current thresholds. Please see
datasheet.

19.5.3.11 GPIO Pad Data Input Registers (GPDIO_3-GPDI120_123)

These registers are used to read the GPIO pad data with a byte access.

3

DoclD14629 Rev 9 337/888

System Integration Unit Lite (SIUL) RM0017

Offsets: 0x0800—0x0878 (31 registers) Access: User read
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R S =
0 0 0 0 0 0 0 é 0 0 0 0 0 0 0 E
w

o
g
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R g 2
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 3
[a o
W
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 151. Port GPIO Pad Data Input Register 0-3 (GPDIO_3)

Table 151. GPDIO_3 field descriptions

Field Description

PDI[x] Pad Data In
This bit stores the value of the external GPIO pad associated with this register.

0 Value of the data in signal for the corresponding GPIO pad is logic low
1 Value of the data in signal for the corresponding GPIO pad is logic high

19.5.3.12 Parallel GPIO Pad Data Out Registers (PGPDOO0 — PGPDQO?3)

SPC560Bx and SPC560Cx devices ports are constructed such that they contain 16 GPIO
pins, for example PortA[0..15]. Parallel port registers for input (PGPDI) and output (PGPDO)
are provided to allow a complete port to be written or read in one operation, dependent on
the individual pad configuration.

Writing a parallel PGPDO register directly sets the associated GPDO register bits. There is
also a masked parallel port output register allowing the user to determine which pins within
a port are written.

While very convenient and fast, this approach does have implications regarding current
consumption for the device power segment containing the port GPIO pads. Toggling several
GPIO pins simultaneously can significantly increase current consumption.

Caution: Caution must be taken to avoid exceeding maximum current thresholds when toggling
multiple GPIO pins simultaneously. Please see datasheet.

Table 152 shows the locations and structure of the PGPDOX registers.

3

338/888 DoclD14629 Rev 9

RM0017 System Integration Unit Lite (SIUL)
Table 152. PGPDOO — PGPDO3 register map
Offset . Field
1 Register
AP P NP EEEEFEEEEEEEEEEEREEEEREE
0x0C00 | PGPDOO Port A Port B
0x0C04 | PGPDO1 Port C Port D
0x0C08 | PGPDO2 Port E Port F
0x0COC | PGPDO3 Port G Port H

1. SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

19.5.3.13

It is important to note the bit ordering of the ports in the parallel port registers. The most
significant bit of the parallel port register corresponds to the least significant pin in the port.
For example in Table 152, the PGPDOO register contains fields for Port A and Port B.

e Bit0is mapped to Port A[0], bit 1 is mapped to Port A[1] and so on, through bit 15,
which is mapped to Port A[15]

e Bit 16 is mapped to Port B[0], bit 17 is mapped to Port B[1] and so on, through bit 31,
which is mapped to Port B[15].

Parallel GPIO Pad Data In Registers (PGPDIO — PGPDI3)

The SIU_PGPDI registers are similar in operation to the PGPDIO registers, described in the
previous section (Section 19.5.3.12: Parallel GPIO Pad Data Out Registers (PGPDOO —
PGPDO3)) but they are used to read port pins simultaneously.

Note: The port pins to be read need to be configured as inputs but even if a single pin within a port
has IBE set, then you can still read that pin using the parallel port register. However, this
does mean you need to be very careful.

Reads of PGPDI registers are equivalent to reading the corresponding GPDI registers but
significantly faster since as many as two ports can be read simultaneously with a single 32-
bit read operation.
Table 153 shows the locations and structure of the PGPDIx registers. Each 32-bit PGPDIx
register contains two 16-bit fields, each field containing the values for a separate port.
Table 153. PGPDIO — PGPDI3 register map
Offset . Field
1) Register
NP PN P EEEEEEEEEEEEEEEREEREEEE

0x0C40 | PGPDIO Port A Port B

0x0C44 | PGPDI1 Port C Port D

0x0C48 | PGPDI2 Port E Port F

0x0C4C | PGPDI3 Port G Port H

1. SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

3

It is important to note the bit ordering of the ports in the parallel port registers. The most
significant bit of the parallel port register corresponds to the least significant pin in the port.

DoclD14629 Rev 9

339/888

System Integration Unit Lite (SIUL) RM0017

For example in Table 153, the PGPDIO register contains fields for Port A and Port B.

e Bit0is mapped to Port A[0], bit 1 is mapped to Port A[1] and so on, through bit 15,
which is mapped to Port A[15]

e Bit 16 is mapped to Port B[0], bit 17 is mapped to Port B[1] and so on, through bit 31,
which is mapped to Port B[15].

19.5.3.14 Masked Parallel GPIO Pad Data Out Register (MPGPDO0O-MPGPDQO7Y)

The MPGPDOX registers are similar in operation to the PGPDOX ports described in

Section 19.5.3.12: Parallel GPIO Pad Data Out Registers (PGPDOO — PGPDO3), but with

two significant differences:

e The MPGPDOX registers support masked port-wide changes to the data out on the
pads of the respective port. Masking effectively allows selective bitwise writes to the full
16-bit port.

e Each 32-bit MPGPDOX register is associated to only one port.

Note: The MPGPDOX registers may only be accessed with 32-bit writes. 8-bit or 16-bit writes will
not modify any bits in the register and will cause a transfer error response by the module.

Read accesses return ‘0'.

Table 154 shows the locations and structure of the MPGPDOX registers. Each 32-bit

MPGPDOX register contains two 16-bit fields (MASK, and MPPDQO,). The MASK field is a

bitwise mask for its associated port. The MPPDOO field contains the data to be written to the

port.
Table 154. MPGPDOO — MPGPDOQOY register map
Offset . Field
1) Register
SEREEEENEEEEEEEEEEEEEEREREEREREE
0x0C80 | MPGPDOO MASKO (Port A) MPPDOO (Port A)
0x0C84 | MPGPDO1 MASK1 (Port B) MPPDO1 (Port B)
0x0C88 | MPGPDO2 MASK2 (Port C) MPPDO2 (Port C)
0x0C8C | MPGPDO3 MASK3 (Port D) MPPDO3 (Port D)
0x0C90 | MPGPDO4 MASKA4 (Port E) MPPDO4 (Port E)
0x0C94 | MPGPDO5 MASKS5 (Port F) MPPDOS5 (Port F)
0x0C98 | MPGPDO6 MASKE®6 (Port G) MPPDOG6 (Port G)
0x0C9C | MPGPDO7 MASK?7 (Port H) MPPDOY7 (Port H)

1. SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

340/888

It is important to note the bit ordering of the ports in the parallel port registers. The most
significant bit of the parallel port register corresponds to the least significant pin in the port.

For example in Table 154, the MPGPDOO register contains field MASKO, which is the bitwise
mask for Port A and field MPPDOO, which contains data to be written to Port A.

e MPGPDOQOI[O0] is the mask bit for Port A[0], MPGPDOO[1] is the mask bit for Port A[1]
and so on, through MPGPDOQ[15], which is the mask bit for Port A[15]

e MPGPDOQOQ[16] is the data bit mapped to Port A[0], MPGPDOO[17] is mapped to Port
A[1] and so on, through MPGPDOOQ[31], which is mapped to Port A[15].

DoclD14629 Rev 9 ‘Yl

RMO0017

System Integration Unit Lite (SIUL)

Table 155. MPGPDOO0..MPGPDOY field descriptions

Field Description
MASK, Mask Field
[15:0] Each bit corresponds to one data bit in the MPPDO, register at the same bit location.

0 Associated bit value in the MPPDO,field is ignored
1 Associated bit value in the MPPDO,, field is written

MPPDO, Masked Parallel Pad Data Out

[15:0] Write the data register that stores the value to be driven on the pad in output mode.

Accesses to this register location are coherent with accesses to the bitwise GPIO Pad Data
Output Registers (GPDOO0_3-GPD0120_123).
The x and bit index define which MPPDO register bit is equivalent to which PDO register bit
according to the following equation:
MPPDOIx][y] = PDO[(x*16)+Y]

Caution: Toggling several I0s at the same time can significantly increase the current in a pad group.
Caution must be taken to avoid exceeding maximum current thresholds. Please see
datasheet.

19.5.3.15 Interrupt Filter Maximum Counter Registers (IFMCO-IFMC15)

These registers are used to configure the filter counter associated with each digital glitch
filter.

Note: For the pad transition to trigger an interrupt it must be steady for at least the filter period.

Offset: 0x1000—0x103C) (16 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0
MAXCNTX
AW
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 152. Interrupt Filter Maximum Counter Registers (IFMCO-IFMC15)
Table 156. IFMC field descriptions
Field Description
MAXCNTX Maximum Interrupt Filter Counter setting

Filter Period = T(CK)*MAXCNTX + n*T(CK)

Where (n can be -1 to 3)

MAXCNTX can be 0 to 15

T(CK): Prescaled Filter Clock Period, which is FIRC clock prescaled to IFCP value
T(FIRC): Basic Filter Clock Period: 62.5 ns (fgjrc = 16 MHz)

3

DoclD14629 Rev 9 341/888

System Integration Unit Lite (SIUL) RM0017

19.5.3.16 Interrupt Filter Clock Prescaler Register (IFCPR)

This register is used to configure a clock prescaler which is used to select the clock for all
digital filter counters in the SIUL.

Offsets:0x1080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IFCP

Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 153. Interrupt Filter Clock Prescaler Register (IFCPR)

Table 157. IFCPR field descriptions

Field Description

IFCP Interrupt Filter Clock Prescaler setting

Prescaled Filter Clock Period = T(FIRC) x (IFCP + 1)
T(FIRC) is the fast internal RC oscillator period.
IFCP can be 0 to 15.

19.6 Functional description

19.6.1 Pad control

The SIUL controls the configuration and electrical characteristic of the device pads. It
provides a consistent interface for all pads, both on a by-port and a by-bit basis. The pad
configuration registers (PCRn, see Section 19.5.3.8: Pad Configuration Registers (PCRO—
PCR122)) allow software control of the static electrical characteristics of external pins with a
single write. These are used to configure the following pad features:

e Open drain output enable

e Slew rate control

e Pull control

e Pad assignment

e Control of analog path switches

e Safe mode behavior configuration

19.6.2 General purpose input and output pads (GPIO)

The SIUL manages up to 123 GPIO pads organized as ports that can be accessed for data
reads and writes as 32, 16 or 8-bit(®).

342/888 DoclD14629 Rev 9 ‘Yl

RMO0017

System Integration Unit Lite (SIUL)

Note:

Ports are organized as groups of 16 GPIO pads, with the exception of Port J, which has 5. A
32-bit R/W operation accesses two ports simultaneously. A 16-bit operation accesses a full
port and an 8-bit access either the upper or lower byte of a port.

As shown in Figure 154, all port accesses are identical with each read or write being
performed only at a different location to access a different port width.

Figure 154. Data Port example arrangement showing configuration for different port width

SIUL Base+
0x0C03

19.6.3

3

31 23 15 7 0

SIUL Base+ 0x0C00 | 32-bit Access (2 ports)

7 0 15 7 0

16-bit Access (full port) | SI%)I(‘O?:%%H | 16-bit Access (full port) |

15
SIUL Base+
0x0C02 |

7 0 7 0 7 0 7 0
- SIUL Base+ - SIUL Base+ - SIUL Base+ =
8-bit Access 8-bit Access 8-bit Access 8-bit Access
half port 0x0C02 half port 0x0C01 half port 0x0C00 half port
accesses

The SIUL has separate data input (GPDIn_n, see Section 19.5.3.11: GPIO Pad Data Input
Registers (GPDIO_3-GPDI120_123)) and data output (GPDOnN_n, see Section 19.5.3.10:
GPIO Pad Data Output Registers (GPDOO0O_3-GPDO0120_123)) registers for all pads,
allowing the possibility of reading back an input or output value of a pad directly. This
supports the ability to validate what is present on the pad rather than simply confirming the
value that was written to the data register by accessing the data input registers.

Data output registers allow an output pad to be driven high or low (with the option of push-
pull or open drain drive). Input registers are read-only and reflect the respective pad value.

When the pad is configured to use one of its alternate functions, the data input value reflects
the respective value of the pad. If a write operation is performed to the data output register
for a pad configured as an alternate function (non-GPIO), this write will not be reflected by

the pad value until reconfigured to GPIO.

The allocation of what input function is connected to the pin is defined by the PSMI registers
(PCRn, see Section 19.5.3.9: Pad Selection for Multiplexed Inputs Registers (PSMIO_3—
PSMI28_31)).

External interrupts

The SIUL supports 16 external interrupts, EIRQO-EIRQ15. In the signal description chapter
of this reference manual, mapping is shown for external interrupts to pads.

The SIUL supports twointerrupt vectors to the interrupt controller. Each vector interrupt has
eight external interrupts combined together with the presence of flag generating an interrupt
for that vector if enabled. All of the external interrupt pads within a single group have equal
priority.

See Figure 155 for an overview of the external interrupt implementation.

p. There are exceptions. Some pads, e.g., precision analog pads, are input only.

DoclD14629 Rev 9 343/888

System Integration Unit Lite (SIUL) RM0017

Interrupt
Vectors
-
o 15
S =2
=
[T 1
= = IRQ_15_08 IRQ_07_00
S5
@)
OR OR
[T T T T T T 1 (TTTTTT]
Interrupt enable | IRE[15:0]* |
T
Glitch filter Prescaler EIF[15:8] EIF[7:0]
- Interrupt Edge Enable
TILLIT ||||||
Glitch filter Counter_n Edge Detection | IREE[15:0]" |

|
[T L TIIIT

Falling

ma LI =

19.7

344/888

Pads

Figure 155. External interrupt pad diagram

1. This value is valid in the 144-pin LQFP and the 208-pin packages, while there are 12 interrupts in the 100-
pin LQFP packages

Each interrupt can be enabled or disabled independently. This can be performed using the

IRER. A pad defined as an external interrupt can be configured to recognize interrupts with

an active rising edge, an active falling edge or both edges being active. A setting of having

both edge events disabled is reserved and should not be configured.

The active EIRQ edge is controlled through the configuration of the registers IREER and
IFEER.

Each external interrupt supports an individual flag which is held in the Interrupt Status Flag
Register (ISR). The bits in the ISR[EIF] field are cleared by writing a ‘1’ to them; this prevents
inadvertent overwriting of other flags in the register.

Pin muxing

For pin muxing, please see the signal description chapter of this reference manual.

3

DoclD14629 Rev 9

RM0017 Inter-Integrated Circuit Bus Controller Module (IZC)
20 Inter-Integrated Circuit Bus Controller Module (1°C)
20.1 Introduction
20.1.1 Overview
The Inter-Integrated Circuit (I’°C™ or IIC) bus is a two wire bidirectional serial bus that
provides a simple and efficient method of data exchange between devices. It minimizes the
number of external connections to devices and does not require an external address
decoder.
This bus is suitable for applications requiring occasional communications over a short
distance between a number of devices. It also provides flexibility, allowing additional devices
to be connected to the bus for further expansion and system development.
The interface is designed to operate up to 100 kbps in Standard Mode and 400 Kbps in Fast
Mode. The device is capable of operating at higher baud rates, up to a maximum of module
clock/20 with reduced bus loading. Actual baud rate can be less than the programmed baud
rate and is dependent on the SCL rise time. SCL rise time is dependent on the external pullup
resistor value and bus loading. The maximum communication length and the number of
devices that can be connected are limited by a maximum bus capacitance of 400 pF.
20.1.2 Features
The 12C module has the following key features:
e Compatible with 12C Bus standard
e Multi-master operation
e Software programmable for one of 256 different serial clock frequencies
e Software selectable acknowledge bit
e Interrupt driven byte-by-byte data transfer
e Arbitration lost interrupt with automatic mode switching from master to slave
e Calling address identification interrupt
e Start and stop signal generation/detection
e Repeated start signal generation
e Acknowledge bit generation/detection
e Bus busy detection
Features currently not supported:
e No support for general call address
e Not compliant to ten-bit addressing
20.1.3 Block diagram

3

The block diagram of the 12C module is shown in Figure 156.

DoclD14629 Rev 9 345/888

Inter-Integrated Circuit Bus Controller Module (I2C) RM0017

20.2

20.2.1

20.2.2

20.3

20.3.1

346/888

12C

Start

Stop
Arbitration
Control

Registers

Interrupt
- In/Out «— > SCL
Clock Data

bus_clock Control Shift
> Register <—> SDA

Address
Compare

Figure 156. I1°C block diagram

External signal description

The Inter-Integrated Circuit (IZC) module has two external pins, SCL and SDA.

SCL

This is the bidirectional Serial Clock Line (SCL) of the module, compatible with the 1°C-Bus
specification.

SDA

This is the bidirectional Serial Data line (SDA) of the module, compatible with the 12C-Bus
specification.

Memory map and register description

Module memory map

The memory map for the I2C module is given below in Table 158. The total address for each
register is the sum of the base address for the 1°C module and the address offset for each
register.

3

DoclD14629 Rev 9

RM0017 Inter-Integrated Circuit Bus Controller Module (IZC)

Table 158. 12C memory map

Base address: OxFFE3_0000
Address offset Register Location
0x0 12C Bus Address Register (IBAD) on page 347
0x1 1°C Bus Frequency Divider Register (IBFD) on page 347
0x2 12C Bus Control Register (IBCR) on page 354
0x3 I°C Bus Status Register (IBSR) on page 355
Ox4 12C Bus Data I/O Register (IBDR) on page 356
0x5 12C Bus Interrupt Config Register (IBIC) on page 357

All registers are accessible via 8-bit, 16-bit or 32-bit accesses. However, 16-bit accesses
must be aligned to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit
boundaries. As an example, the IBDF register for the frequency divider is accessible by a 16-
bit read/write to address Base + 0x000, but performing a 16-bit access to Base + 0x001 is
illegal.

20.3.2 I°C Bus Address Register (IBAD)

This register contains the address the 12C bus will respond to when addressed as a slave;
note that it is not the address sent on the bus during the address transfer.

Offset 0x0 Access: Read/write any time
7 6 5 4 ‘ 3 2 1 0
R 0
ADR
W
Reset 0 0 0 0 | 0 0 0 0

Figure 157. I°C Bus Address Register (IBAD)

Table 159. IBAD field descriptions

Field Description

ADR Slave Address. Specific slave address to be used by the 12C Bus module.
Note: Th